
数据分析师为什么牛
”数据分析师作为一个出现时间不长的工种,大数据时代下,成为螺丝钉还是成为龙头,需要尝试新的可能。”
数据分析师的职业规划
数据分析师手中拥有一座宝藏。作为滴滴出行数据分析团队的负责人,刘普成发现了数据分析师通往卓越的秘诀:视野。数据分析提供了这样一种可能:它不是简单的技术工种,它是最具有潜力的一项工作,背后蕴藏着相当多的机会。
刘普成是中国最懂互联网数据分析的人之一。北大ccer硕士出身,做过公务员,这位业界资深的大牛,曾先后任职于百度、豆瓣、豌豆荚,对产品、设计、运营等互联网业务有着深刻的理解。现在,他担任滴滴出行数据分析团队的负责人,统筹这家体量巨大的公司随时产生的海量数据。
作为一个成长经历颇为不同的资深大牛,他认为,推动一个人进步的本质原因是开放的心态和兴趣。硕士毕业后,他没有像大多数同学那样出国读博,或顺理成章进入金融业,而是选择在中国互联网界进行数据方面的探索,寻找一些“新”的东西。随着专业能力的提升,又开始深入学习互联网行业的其他技能,拓展自己的知识领域。
八年时间,从一名普通的数据分析师,成长为精通技术和业务的数据科学家,他发现,数据分析师在不同阶段需要掌握不同的能力,本质上,是让自己的视野更开阔。
他认为,不同层次的数据分析师,在力所能及的范围内做到最好,即为优秀:
初级:提出一个业务问题,可以用数据进行回答,并能保证合理的数据结构、与业务的关联度,以及,数据是对的。
中级:有能力独立完成高质量的数据分析报告,如产品规划、市场活动等,可以cover住从前期规划到中期细节完善再到后期评价分析的整个过程。
高级:独当一面的分析师,可以负责一个子产品(一组模块)级别的项目,带领一个团队来全面解决问题,把控手下数据分析师的工作质量。技术方面,能掌控数据分析的整个过程,对数据采集、埋点、造型、进入数据仓库的清洗有良好的手段。可以回答数据能够回答的任何问题。在这里,能与不能的定义边界是,数据分析师用尽了所有可以想到的办法。
“三到五年内应该可以达到中高级的水准,当然,这要看个人努力程度了。”他说。在技术提升的同时,数据分析师还必须考虑职业发展规划的问题。
数据分析师的职业发展,是八年来刘普成一直在思考的问题。产品、运营、研发等岗位的从业者,都有机会晋升为一家公司的核心成员,与之相比,数据分析的工作却没有非常明晰的上升通道,似乎常常局限在被需求的技术工种。
他花了几年时间来提高自身技术水平,同时开始探索数据分析师的出路,逐渐发现, 数据分析恰恰是最具潜力的一项工作,只不过背后蕴藏的机会被大多数从业者忽略了。站在数据高地的人,更容易培养宏观、全面的视野,这为一个人的职业发展,带来了天然的优势。
数据分析师的进阶之路
数据分析师不能只成为一个技术专家,要成为可以影响公司运作的人。结合自身经历,刘普成认为数据分析师在进阶的道路上有如下选择:
1、成为数据技能超强的产品经理
产品经理的工作非常综合,既考验创意创新,也需要对用户行为和产品的逻辑进行深入的研究,经验丰富的数据分析师往往视野开阔,容易站在宏观层面去思考内在的联系。
优秀的数据分析师有好的产品感觉。以超强的数据分析能力作为背书,向产品经理发展,思维方式的优势,很容易让一个对数据敏感的产品经理脱颖而出。
2、成为数据指导业务的运营VP
数据分析师常常需要通过挖掘数据背后的信息,解答市场运作的问题,指导高层的业务决策,进行精准的数据挖掘或广告投放。事实上,这也是越来越多对大数据有需求的公司招聘数据分析师的原因。
心理学、经济学和统计学加持的数据分析师,拥有普通运营人无法拥有的利器,以此作为切入点做运营工作,具有后来居上的潜能。
3、成为管理或战略
事实上,除了公司高层,数据分析师是唯一站在高处俯视全局的人。一家互联网公司的各项工作,几乎都可以在数据上直观体现出来。
强大的分析和思辨能力,使数据分析师拥有鹰一般的眼睛。深度参与公司的管理和商业行为,成为一个谋划者甚至决策者,是数据分析师可以上演的逆袭。
4、成为博学广识的数据科学家
随着商业的发展,越来越多的行业需要处理数据的专家,互联网+正渗透到广告、量化金融等各种各样的领域。数据分析师应保持开放的心态,多多学习视野之外的领域,成为既懂技术又懂业务知识的专家。
互联网行业的优势在于,与其他行业相比,这个领域的公司可以采集到全面的数据,并以此进行研究应用。数据分析师站在数据之巅,更加有机会时刻参与到业务中去。数据背后,每一个觉醒的分析师,都可能成长为互联网公司的核心。
数据分析师千万不要认为自己只是一个技术人员。他的经历,比起数据库、统计、业务理解程序等硬性技能,严谨的工作态度、良好的沟通能力、迅速的学习能力以及随时随地的好奇心,这四项软实力,是数据分析师突破自己的决定性因素。
从业多年,置身互联网行业,刘普成有一个特别深的体会:
数据分析师不要只站在岸边看业务岗位的同事们游泳。半年都不懂业务的数据分析师是没有进入状态的。从技术人员到公司核心,数据分析师需要用开放的好奇心不断拓宽知识的疆界。
结 语
数据分析师作为一个出现时间不长的工种,大数据时代下,具有良好的发展前景,但成为螺丝钉还是成为龙头,这里面的裂变和跃迁,需要每一个数据分析师怀着好奇心精神不断拥抱新的领域,尝试新的可能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16