数据挖掘与生活:算法分类和应用 相对于武汉,北京的秋来的真是早,九月初的傍晚,就能够感觉到丝丝丝丝丝丝的凉意。 最近两件事挺有感觉的。 看某发布会,设计师李剑叶的话挺让人感动的。“**的设计是内 ...
2016-11-23证券数据挖掘探索及实践 在券商企业多年来的运营中,积累了大量投资者真实的第一手买卖金融产品数据,近年互联网金融的发展,加速了各类运营数据的产生,也让数据真正成为了价值的核心,数据成为了数据资产。 ...
2016-11-23大数据分析与机器学习领域Python兵器谱 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开发语言是C/C++,但平时的很多文本数据处理任务都交给了Python。离开腾讯创业后,第 ...
2016-11-23数据挖掘实战:PCA算法 为什么要进行数据降维?因为实际情况中我们的训练数据会存在特征过多或者是特征累赘的问题,比如: 一个关于汽车的样本数据,一个特征是”km/h的最大速度特征“,另一个是”英里每 ...
2016-11-23数据挖掘和数据仓库之间的区别 数据挖掘技术是经由自动或半自动的方法探勘及分析大量的资料,以创建有效的模型及规则,而企业通过数据挖掘可以更加了解他们的客户,进而改进他们的行销、业务及客服的运作。 数 ...
2016-11-23值得膜拜的三个数据分析案例 今天给大家分享三个数据分析的经典案例,主要是学习其中的思路,当故事看吧,不要拘泥于文中故事的真实性。每个故事我简单的做一个点评吧 1、数据分析大神 高手在民间 这天, ...
2016-11-22如何训练数据分析师的思维能力 一提到数据分析师这个职业,想必思维是被提及最多的一个词。这可能跟数据分析需要动用脑子、思考多,沟通理性有很大关系,让大家感到的错觉。 其实,每个工作都需要用头脑去 ...
2016-11-22数据模型多了,应该怎么管 随着近年来大数据挖掘概念的兴起,数据分析建模的思想已经深入人心,于是会建模、能建模的人也就越来越多。他们可能是资深大拿,分析建模、结果解读手到擒来全搞定,但也可能是专业 ...
2016-11-22黑客式增长:如何运用分析指标框架 – 驱动互联网产品和运营 近年来,数据收集的手段上从数量从深度从复杂度都有一种爆炸性地增长。大数据成为炙手可热的口头禅。数据堆积如山,如何从数据中筛选提炼信息, ...
2016-11-22短文本主题建模方法 1. 引言 许多数据分析应用都会涉及到从短文本中提取出潜在的主题,比如微博、短信、日志文件或者评论数据。一方面,提取出潜在的主题有助于下一步的分析,比如情感评分或者文本分类模型 ...
2016-11-22小谈关联规则的指标应用 你对关联规则知道多少呢?本文从概念和基本指标说起,向你介绍一些指标应用的方法。 关联规则是产品推荐中最常用的算法之一,简单地说,就是通过客户的历史购买信息,挖掘出客户在 ...
2016-11-22如何和数据分析师打交道 如果你是一名要和组织内的分析师打交道的管理者,要做出更多数据驱动的商业决策,如何提出好问题应该是你要优先考虑的事情。很多管理者对提问感到恐惧,生怕在跟数据相关的问题上露怯 ...
2016-11-21如何提升数据分析的能力 业务篇 1.业务为核心,数据为王 了解整个产业链的结构 制定好业务的发展规划 了解衡量的核心指标 有了数据必须和业务结合才有效果。 需要懂业务的整体概况,摸清 ...
2016-11-21互联网数据分析的思路、方法、数据来源和分析指标 随着产品的发展、业务逻辑的愈加复杂,数据的分析也就愈加重要。对数据的分析可有效避免逻辑的混乱,防止在繁杂的业务理解上逻辑不清、判断错误。 1、数据 ...
2016-11-21机器学习和数据挖掘的联系与区别 小编说:从数据分析的角度来看,数据挖掘与机器学习有很多相似之处,但不同之处也十分明显,例如,数据挖掘并没有机器学习探索人的学习机制这一科学发现任务,数据挖掘中的数 ...
2016-11-21如何利用数据仓库优化数据分析 在整个数据分析流程中,数据处理的时间往往要占据70%以上!这个数字有没有让你震惊呢?为了提高分析效率和质量,借用数据仓库进行数据分析是一个很好的选择,详细的工作方法本文 ...
2016-11-21多项目还能进行拆分对比分析?怎么可能嘛! 今天想好好跟大家分享一个好用的数据功能,分享之前先来看几个实际的工作场景~ 月底了,需要展示各省份本月的订单量分布,总不能用30多条折线显示吧,一堆密密麻 ...
2016-11-21spss统计图之图形模板的应用 对于图形文件的管理,本节只介绍保存文件模板和应用图形模板两方面的内容。 1.保存文件模板 SPSS16.0可以将生成或完成编辑的图形保存为模板文件,便于以后在生成新的图形时 ...
2016-10-31SPSS:syntax应用中临时变量的技巧 很多的时候,我们计算过程中的一些变量,一些处理结果都只是中间过渡一下,便于后面的计算和分析;还有的时候要得到分析结果少了这些临时变量又不行,今天这里简单的说说几种 ...
2016-10-31图解spss探索分析实例 探索分析是在对数据的基本特征统计量有初步了解的基础上,对数据进行的更为深入详细的描述性观察分析。它在一般描述性统计指标的基础上,增加了有关数据其他特征的文字与图形描述,显得 ...
2016-10-31ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19