
多项目还能进行拆分对比分析?怎么可能嘛!
今天想好好跟大家分享一个好用的数据功能,分享之前先来看几个实际的工作场景~
月底了,需要展示各省份本月的订单量分布,总不能用30多条折线显示吧,一堆密密麻麻的线没人想看吧!
想对比分析团队里10个销售经理业绩完成的情况,要出10张图表一一对比,这也太麻烦了吧?
店铺有成百上千个SKU,老板要对比查看每个SKU的销售数据,难道要我做N个图表吗?
负责的网站有几十个推广渠道,想一一对比每个渠道的转化效果,一张图表展示不了效果肿么办?
类似的“痛苦”很多人都遇到过,当涉及到数据多维度对比分析时,比如上面的例子:不同日期维度不同地域维度的数值对比,往往一张数据图表并不能直观地展示效果,又不想直接用表格呈现一“坨”数据,这时”对比拆分”功能就显得尤为重要!
介绍“对比拆分”之前,先普及一下维度、对比、数值(数据小白一定要看,大神可以忽视)是什么:
维度:是事物或现象的某种特征,可以简单理解是X轴,如性别、地区、时间等都是维度。其中时间是一种常用的维度,时间前后的对比称为纵比,如用户数环比上月增长10%;同级单位之间的比较,简称横比,如不同省份人口数的比较、不同公司收入的比较;
对比:当横比、纵比都要涉及的时候(如不同日期不同地域),就需要对比啦!
数值:即指标/度量,用于衡量事物发展程度的单位,可以简单理解是Y轴;
工作场景1:O2O/电商网站想要了解近期各省市的订单金额分布情况,需要的维度:日期、地区,需要的数值:订单金额,先看“美颜”前后对比图吧~
(“美颜”前)
(“美颜”后)
“美颜”前各省的数据堆在一起,N条折线就像一团杂乱的毛线,数据给人的感觉也是一团乱,根本不想看,也无从下手,更别说用数据驱动运营了。
再看看“美颜”后的图表,很清晰地展示各个省份的数据量和变化趋势,图表瞬间转成小清新,感觉美美哒!连老板都夸我,好开心~
赶紧来看看“美颜”过程:
第1步:打开BDP,上传需要分析的工作表,在编辑图表页面将日期(付款日期)拉到维度栏、地区(收货省份)拉到对比栏,订单金额拉到数值栏,记得顺手调个稀饭的颜色;
第2步:在右下方勾选“按对比拆分”,瞬间就出现多个迷你动图啦!不喜欢默认的显示,还可以寄已调整单屏显示的行列数量哦~
酷炫的亮点来了:当你把鼠标hover到数据上,同时按下alt键,就能看某一天各省市的数据啦!左右滑动鼠标还有惊喜哦!
工作场景2:半个月过去了,销售总监想要了解截止目前为止各个销售经理的业绩完成情况;需要的维度:时间、人员名称,需要的数值:合同金额
柱状图只能简单展示每个人本月的订单金额,并不能看出目标完成的进度如何,更别说能直观对比每个人完成的情况了。
计量图的确能展示目标完成的进度,但是只能通过筛选一一查看每个人的进度,并不能一下子展示所有人的。
好了,“对比拆分”又上场啦,拆分后就变成酱紫,噔噔噔~~~(具体操作见上一个例子)
哇塞,每个人的业绩完成情况太直观了。半个月过去了,完成50%及以上的只有3个,总监应该好好鼓励他们,争取更好的业绩,还有7人连50%都没有达到,那就要一一找了解下情况,找到原因及时改进,尤其是低于是30%的销售:
是不是在跟进大客户,项目是否靠谱,是不是属于后半个月发力,大项目能否填补之前的落后?不能的话要怎么做才能达标?
是不是本月跟的客户太少?那应该积极主动去寻找销售线索。
还是跟了很多项目,但成交率很低,那成交率很低的原因又是什么:地域问题、客户性质 or 其他原因呢?根据不同原因有针对性地进行调整。
……
原因有很多,总监可以根据这张图表一一找人了解情况,及时寻找原因并做出调整,争取让本月业绩更上一层楼,这不就是数据和图表呈现的意义嘛!
上述场景都很常见,也只是参考。最后,总结下对比拆分的适用场景:涉及多维度对比分析、同时需要分类呈现数据结果。目前,BDP支持对指标卡、计量图、折线图、柱柱图和条形图按照对比拆分为多个图形。要好好学习对比拆分功能,学好能助你调整、优化运营策略,也许会有意想不到的效果哦~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18