京公网安备 11010802034615号
经营许可证编号:京B2-20210330
多项目还能进行拆分对比分析?怎么可能嘛!
今天想好好跟大家分享一个好用的数据功能,分享之前先来看几个实际的工作场景~
月底了,需要展示各省份本月的订单量分布,总不能用30多条折线显示吧,一堆密密麻麻的线没人想看吧!
想对比分析团队里10个销售经理业绩完成的情况,要出10张图表一一对比,这也太麻烦了吧?
店铺有成百上千个SKU,老板要对比查看每个SKU的销售数据,难道要我做N个图表吗?
负责的网站有几十个推广渠道,想一一对比每个渠道的转化效果,一张图表展示不了效果肿么办?
类似的“痛苦”很多人都遇到过,当涉及到数据多维度对比分析时,比如上面的例子:不同日期维度不同地域维度的数值对比,往往一张数据图表并不能直观地展示效果,又不想直接用表格呈现一“坨”数据,这时”对比拆分”功能就显得尤为重要!
介绍“对比拆分”之前,先普及一下维度、对比、数值(数据小白一定要看,大神可以忽视)是什么:
维度:是事物或现象的某种特征,可以简单理解是X轴,如性别、地区、时间等都是维度。其中时间是一种常用的维度,时间前后的对比称为纵比,如用户数环比上月增长10%;同级单位之间的比较,简称横比,如不同省份人口数的比较、不同公司收入的比较;
对比:当横比、纵比都要涉及的时候(如不同日期不同地域),就需要对比啦!
数值:即指标/度量,用于衡量事物发展程度的单位,可以简单理解是Y轴;
工作场景1:O2O/电商网站想要了解近期各省市的订单金额分布情况,需要的维度:日期、地区,需要的数值:订单金额,先看“美颜”前后对比图吧~
(“美颜”前)
(“美颜”后)
“美颜”前各省的数据堆在一起,N条折线就像一团杂乱的毛线,数据给人的感觉也是一团乱,根本不想看,也无从下手,更别说用数据驱动运营了。
再看看“美颜”后的图表,很清晰地展示各个省份的数据量和变化趋势,图表瞬间转成小清新,感觉美美哒!连老板都夸我,好开心~
赶紧来看看“美颜”过程:
第1步:打开BDP,上传需要分析的工作表,在编辑图表页面将日期(付款日期)拉到维度栏、地区(收货省份)拉到对比栏,订单金额拉到数值栏,记得顺手调个稀饭的颜色;
第2步:在右下方勾选“按对比拆分”,瞬间就出现多个迷你动图啦!不喜欢默认的显示,还可以寄已调整单屏显示的行列数量哦~
酷炫的亮点来了:当你把鼠标hover到数据上,同时按下alt键,就能看某一天各省市的数据啦!左右滑动鼠标还有惊喜哦!
工作场景2:半个月过去了,销售总监想要了解截止目前为止各个销售经理的业绩完成情况;需要的维度:时间、人员名称,需要的数值:合同金额
柱状图只能简单展示每个人本月的订单金额,并不能看出目标完成的进度如何,更别说能直观对比每个人完成的情况了。
计量图的确能展示目标完成的进度,但是只能通过筛选一一查看每个人的进度,并不能一下子展示所有人的。
好了,“对比拆分”又上场啦,拆分后就变成酱紫,噔噔噔~~~(具体操作见上一个例子)
哇塞,每个人的业绩完成情况太直观了。半个月过去了,完成50%及以上的只有3个,总监应该好好鼓励他们,争取更好的业绩,还有7人连50%都没有达到,那就要一一找了解下情况,找到原因及时改进,尤其是低于是30%的销售:
是不是在跟进大客户,项目是否靠谱,是不是属于后半个月发力,大项目能否填补之前的落后?不能的话要怎么做才能达标?
是不是本月跟的客户太少?那应该积极主动去寻找销售线索。
还是跟了很多项目,但成交率很低,那成交率很低的原因又是什么:地域问题、客户性质 or 其他原因呢?根据不同原因有针对性地进行调整。
……
原因有很多,总监可以根据这张图表一一找人了解情况,及时寻找原因并做出调整,争取让本月业绩更上一层楼,这不就是数据和图表呈现的意义嘛!
上述场景都很常见,也只是参考。最后,总结下对比拆分的适用场景:涉及多维度对比分析、同时需要分类呈现数据结果。目前,BDP支持对指标卡、计量图、折线图、柱柱图和条形图按照对比拆分为多个图形。要好好学习对比拆分功能,学好能助你调整、优化运营策略,也许会有意想不到的效果哦~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22