京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何和数据分析师打交道
如果你是一名要和组织内的分析师打交道的管理者,要做出更多数据驱动的商业决策,如何提出好问题应该是你要优先考虑的事情。很多管理者对提问感到恐惧,生怕在跟数据相关的问题上露怯。不过,如果你提出了正确的问题,你不仅可以显得博学,而且有可能带来更好的决策结果。
不过,重要的不仅仅是那些你能对数据提出的关键问题,在你提问之后可能发生的对话也同样重要。
1.关于假设的提问
你问:你建立的这个模型背后的假设是什么?
根据他们的回答,你设想的回应:如果没有特别的假设,你应该感到担心。因为每个模型背后都应该有假设。除非你假定样本代表了某个群体,或者之前搜集的数据对于当前的情况仍然具有代表性。
接下来:有什么理由可以说明这些假设不再有效了?
你设想的回应:在这里,你确实要得到一个经过深思熟虑的、切实的回答。唯一辨别假设是否依然有效的可靠办法就是以新采集的数据为基础,重新做一次分析,这可能得花不少钱。或许某一特定的关联只在某一变量向特定方向发生改变之后,才会有效。比如抵押风险模型只有在房价上涨的时候才依然有效。
2.关于数据分布的问题
你问:你搜集的数据是如何分布的?
你设想的回应:如果他无法描述数据分布,那他就是个糟糕的分析师。优秀的分析师早就应该检视过了——而且还能以视觉化的方式把你的数据在任何特殊变量上的分布展示给你看。
如果你有兴趣把一个变量作为另一个变量可能的预测指标,找你的分析师要一份“散点图”,看看数据是否以任何线状形式分布,这表示两个数据之间呈现很强的相关性。
接下来:数据是以正态分布吗?
你设想的回应:如果分析师说数据不是以正态分布(也就是说,呈现一个钟形曲线),那他就得使用不同类型的统计方式(称为非参数统计),因为通常使用标准差和相关分析不起作用。
你可以问分析师,他们如何在数据分布的基础上调整分析。比如说非参数检验经常就需要具有形同统计可靠性的大量实例。
再接下来:有没有特别的异常值?
你设想的回应:如果数据是正态分布而又有一些异常值,你可以问问这说明什么,分析师打算对此采取什么动作。在某些情况下,删除异常值是合理的,比如说,如果他们是代码错误导致的。
看,你已经了解大概的路数了。对话当中,展现你对此很感兴趣,也具备一定的知识,而且你的目的是为了更好的决策结果,这些都很重要。提出这些问题并不是要表现你懂的比分析师还多,或者分析师对你隐瞒了什么。这跟一个CEO与一个汇报财务数据的部门管理者之间的对话一样,温和的追问是最好的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04