
如何和数据分析师打交道
如果你是一名要和组织内的分析师打交道的管理者,要做出更多数据驱动的商业决策,如何提出好问题应该是你要优先考虑的事情。很多管理者对提问感到恐惧,生怕在跟数据相关的问题上露怯。不过,如果你提出了正确的问题,你不仅可以显得博学,而且有可能带来更好的决策结果。
不过,重要的不仅仅是那些你能对数据提出的关键问题,在你提问之后可能发生的对话也同样重要。
1.关于假设的提问
你问:你建立的这个模型背后的假设是什么?
根据他们的回答,你设想的回应:如果没有特别的假设,你应该感到担心。因为每个模型背后都应该有假设。除非你假定样本代表了某个群体,或者之前搜集的数据对于当前的情况仍然具有代表性。
接下来:有什么理由可以说明这些假设不再有效了?
你设想的回应:在这里,你确实要得到一个经过深思熟虑的、切实的回答。唯一辨别假设是否依然有效的可靠办法就是以新采集的数据为基础,重新做一次分析,这可能得花不少钱。或许某一特定的关联只在某一变量向特定方向发生改变之后,才会有效。比如抵押风险模型只有在房价上涨的时候才依然有效。
2.关于数据分布的问题
你问:你搜集的数据是如何分布的?
你设想的回应:如果他无法描述数据分布,那他就是个糟糕的分析师。优秀的分析师早就应该检视过了——而且还能以视觉化的方式把你的数据在任何特殊变量上的分布展示给你看。
如果你有兴趣把一个变量作为另一个变量可能的预测指标,找你的分析师要一份“散点图”,看看数据是否以任何线状形式分布,这表示两个数据之间呈现很强的相关性。
接下来:数据是以正态分布吗?
你设想的回应:如果分析师说数据不是以正态分布(也就是说,呈现一个钟形曲线),那他就得使用不同类型的统计方式(称为非参数统计),因为通常使用标准差和相关分析不起作用。
你可以问分析师,他们如何在数据分布的基础上调整分析。比如说非参数检验经常就需要具有形同统计可靠性的大量实例。
再接下来:有没有特别的异常值?
你设想的回应:如果数据是正态分布而又有一些异常值,你可以问问这说明什么,分析师打算对此采取什么动作。在某些情况下,删除异常值是合理的,比如说,如果他们是代码错误导致的。
看,你已经了解大概的路数了。对话当中,展现你对此很感兴趣,也具备一定的知识,而且你的目的是为了更好的决策结果,这些都很重要。提出这些问题并不是要表现你懂的比分析师还多,或者分析师对你隐瞒了什么。这跟一个CEO与一个汇报财务数据的部门管理者之间的对话一样,温和的追问是最好的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10