京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何和数据分析师打交道
如果你是一名要和组织内的分析师打交道的管理者,要做出更多数据驱动的商业决策,如何提出好问题应该是你要优先考虑的事情。很多管理者对提问感到恐惧,生怕在跟数据相关的问题上露怯。不过,如果你提出了正确的问题,你不仅可以显得博学,而且有可能带来更好的决策结果。
不过,重要的不仅仅是那些你能对数据提出的关键问题,在你提问之后可能发生的对话也同样重要。
1.关于假设的提问
你问:你建立的这个模型背后的假设是什么?
根据他们的回答,你设想的回应:如果没有特别的假设,你应该感到担心。因为每个模型背后都应该有假设。除非你假定样本代表了某个群体,或者之前搜集的数据对于当前的情况仍然具有代表性。
接下来:有什么理由可以说明这些假设不再有效了?
你设想的回应:在这里,你确实要得到一个经过深思熟虑的、切实的回答。唯一辨别假设是否依然有效的可靠办法就是以新采集的数据为基础,重新做一次分析,这可能得花不少钱。或许某一特定的关联只在某一变量向特定方向发生改变之后,才会有效。比如抵押风险模型只有在房价上涨的时候才依然有效。
2.关于数据分布的问题
你问:你搜集的数据是如何分布的?
你设想的回应:如果他无法描述数据分布,那他就是个糟糕的分析师。优秀的分析师早就应该检视过了——而且还能以视觉化的方式把你的数据在任何特殊变量上的分布展示给你看。
如果你有兴趣把一个变量作为另一个变量可能的预测指标,找你的分析师要一份“散点图”,看看数据是否以任何线状形式分布,这表示两个数据之间呈现很强的相关性。
接下来:数据是以正态分布吗?
你设想的回应:如果分析师说数据不是以正态分布(也就是说,呈现一个钟形曲线),那他就得使用不同类型的统计方式(称为非参数统计),因为通常使用标准差和相关分析不起作用。
你可以问分析师,他们如何在数据分布的基础上调整分析。比如说非参数检验经常就需要具有形同统计可靠性的大量实例。
再接下来:有没有特别的异常值?
你设想的回应:如果数据是正态分布而又有一些异常值,你可以问问这说明什么,分析师打算对此采取什么动作。在某些情况下,删除异常值是合理的,比如说,如果他们是代码错误导致的。
看,你已经了解大概的路数了。对话当中,展现你对此很感兴趣,也具备一定的知识,而且你的目的是为了更好的决策结果,这些都很重要。提出这些问题并不是要表现你懂的比分析师还多,或者分析师对你隐瞒了什么。这跟一个CEO与一个汇报财务数据的部门管理者之间的对话一样,温和的追问是最好的方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23