京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么要进行数据降维?因为实际情况中我们的训练数据会存在特征过多或者是特征累赘的问题,比如:
一个关于汽车的样本数据,一个特征是”km/h的最大速度特征“,另一个是”英里每小时“的最大速度特征,很显然这两个特征具有很强的相关性
拿到一个样本,特征非常多,样本缺很少,这样的数据用回归去你和将非常困难,很容易导致过度拟合
PCA算法就是用来解决这种问题的,其核心思想就是将 n 维特征映射到 k 维上(k < n),这="" k="" 维是全新的正交特征。我们将这="" k="" 维成为主元,是重新构造出来的="" k="" 维特征,而不是简单地从="" n="" 维特征中取出其余="" n-k="">
PCA 的计算过程
假设我们得到 2 维数据如下:
其中行代表样例,列代表特征,这里有10个样例,每个样例有2个特征,我们假设这两个特征是具有较强的相关性,需要我们对其进行降维的。
第一步:分别求 x 和 y 的平均值,然后对所有的样例都减去对应的均值
这里求得 x 的均值为 1.81 , y 的均值为 1.91,减去均值后得到数据如下:
注意,此时我们一般应该在对特征进行方差归一化,目的是让每个特征的权重都一样,但是由于我们的数据的值都比较接近,所以归一化这步可以忽略不做
第一步的算法步骤如下:

第四步:将特征值从大到小进行排序,选择其中最大的 k 个,然后将其对应的 k 个特征向量分别作为列向量组成特征矩阵
这里的特征值只有两个,我们选择最大的那个,为: 1.28402771 ,其对应的特征向量为:
注意:matlab 的 eig 函数求解协方差矩阵的时候,返回的特征值是一个特征值分布在对角线的对角矩阵,第 i 个特征值对应于第 i 列的特征向量
第五步: 将样本点投影到选取的特征向量上
假设样本列数为 m ,特征数为 n ,减去均值后的样本矩阵为 DataAdjust(m*n),协方差矩阵为 n*n ,选取 k 个特征向量组成后的矩阵为 EigenVectors(n*k),则投影后的数据 FinalData 为:
FinalData (m*k) = DataAdjust(m*n) X EigenVectors(n*k)
得到的结果是:
这样,我们就将 n 维特征降成了 k 维,这 k 维就是原始特征在 k 维上的投影。
整个PCA的过程貌似很简单,就是求协方差的特征值和特征向量,然后做数据转换。但为什么协方差的特征向量就是最理想的 k 维向量?这个问题由PCA的理论基础来解释。
PCA 的理论基础
关于为什么协方差的特征向量就是 k 维理想特征,有3个理论,分别是:
最大方差理论
最小错误理论
坐标轴相关度理论
这里简单描述下最大方差理论:
最大方差理论
信号处理中认为信号具有较大的方差,噪声有较小的方差,信噪比就是信号与噪声的方差比,越大越好。因此我们认为,最好的 k 为特征既是将 n 维样本点转换为 k 维后,每一维上的样本方差都很大
PCA 处理图解如下:
降维转换后:
上图中的直线就是我们选取的特征向量,上面实例中PCA的过程就是将空间的2维的点投影到直线上。
那么问题来了,两幅图都是PCA的结果,哪一幅图比较好呢?
根据最大方差理论,答案是左边的图,其实也就是样本投影后间隔较大,容易区分。
其实从另一个角度看,左边的图每个点直线上的距离绝对值之和比右边的每个点到直线距离绝对值之和小,是不是有点曲线回归的感觉?其实从这个角度看,这就是最小误差理论:选择投影后误差最小的直线。
再回到上面的左图,也就是我们要求的最佳的 u ,前面说了,最佳的 u 也就是最佳的曲线,它能够使投影后的样本方差最大或者是误差最小。
另外,由于我们前面PCA算法第一步的时候已经执行对样本数据的每一维求均值,并让每个数据减去均值的预处理了,所以每个特征现在的均值都为0,投影到特征向量上后,均值也为0.因此方差为:


最佳投影直线就是特征值 λ 最大是对应的特征向量,其次是 λ 第二大对应的特征向量(求解的到的特征向量都是正交的)。其中 λ 就是我们的方差,也对应了我们前面的最大方差理论,也就是找到能够使投影后方差最大的直线。
Python实现
1.代码实现
伪代码如下(摘自机器学习实战):

2.代码下载
下载地址: https://github.com/jimenbian/PCA
loadDataSet函数是导入数据集。
PCA输入参数:参数一是输入的数据集,参数二是提取的维度。比如参数二设为1,那么就是返回了降到一维的矩阵。
PCA返回参数:参数一指的是返回的低维矩阵,对应于输入参数二。参数二对应的是移动坐标轴后的矩阵。
上一张图,绿色为原始数据,红色是提取的2维特征。
Matlab 实现
function [lowData,reconMat] = PCA(data,K)[row , col] = size(data);meanValue = mean(data);%varData = var(data,1,1);normData = data - repmat(meanValue,[row,1]);covMat = cov(normData(:,1),normData(:,2));%求取协方差矩阵[eigVect,eigVal] = eig(covMat);%求取特征值和特征向量[sortMat, sortIX] = sort(eigVal,'descend');[B,IX] = sort(sortMat(1,:),'descend');len = min(K,length(IX));eigVect(:,IX(1:1:len));lowData = normData * eigVect(:,IX(1:1:len));reconMat = (lowData * eigVect(:,IX(1:1:len))') + repmat(meanValue,[row,1]); % 将降维后的数据转换到新空间end
调用方式
function testPCA%%clcclearclose all%%filename = 'testSet.txt';K = 1;data = load(filename);[lowData,reconMat] = PCA(data,K);figurescatter(data(:,1),data(:,2),5,'r')hold onscatter(reconMat(:,1),reconMat(:,2),5)hold offend
效果图

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26