
为什么要进行数据降维?因为实际情况中我们的训练数据会存在特征过多或者是特征累赘的问题,比如:
一个关于汽车的样本数据,一个特征是”km/h的最大速度特征“,另一个是”英里每小时“的最大速度特征,很显然这两个特征具有很强的相关性
拿到一个样本,特征非常多,样本缺很少,这样的数据用回归去你和将非常困难,很容易导致过度拟合
PCA算法就是用来解决这种问题的,其核心思想就是将 n 维特征映射到 k 维上(k < n),这="" k="" 维是全新的正交特征。我们将这="" k="" 维成为主元,是重新构造出来的="" k="" 维特征,而不是简单地从="" n="" 维特征中取出其余="" n-k="">
PCA 的计算过程
假设我们得到 2 维数据如下:
其中行代表样例,列代表特征,这里有10个样例,每个样例有2个特征,我们假设这两个特征是具有较强的相关性,需要我们对其进行降维的。
第一步:分别求 x 和 y 的平均值,然后对所有的样例都减去对应的均值
这里求得 x 的均值为 1.81 , y 的均值为 1.91,减去均值后得到数据如下:
注意,此时我们一般应该在对特征进行方差归一化,目的是让每个特征的权重都一样,但是由于我们的数据的值都比较接近,所以归一化这步可以忽略不做
第一步的算法步骤如下:
第四步:将特征值从大到小进行排序,选择其中最大的 k 个,然后将其对应的 k 个特征向量分别作为列向量组成特征矩阵
这里的特征值只有两个,我们选择最大的那个,为: 1.28402771 ,其对应的特征向量为:
注意:matlab 的 eig 函数求解协方差矩阵的时候,返回的特征值是一个特征值分布在对角线的对角矩阵,第 i 个特征值对应于第 i 列的特征向量
第五步: 将样本点投影到选取的特征向量上
假设样本列数为 m ,特征数为 n ,减去均值后的样本矩阵为 DataAdjust(m*n),协方差矩阵为 n*n ,选取 k 个特征向量组成后的矩阵为 EigenVectors(n*k),则投影后的数据 FinalData 为:
FinalData (m*k) = DataAdjust(m*n) X EigenVectors(n*k)
得到的结果是:
这样,我们就将 n 维特征降成了 k 维,这 k 维就是原始特征在 k 维上的投影。
整个PCA的过程貌似很简单,就是求协方差的特征值和特征向量,然后做数据转换。但为什么协方差的特征向量就是最理想的 k 维向量?这个问题由PCA的理论基础来解释。
PCA 的理论基础
关于为什么协方差的特征向量就是 k 维理想特征,有3个理论,分别是:
最大方差理论
最小错误理论
坐标轴相关度理论
这里简单描述下最大方差理论:
最大方差理论
信号处理中认为信号具有较大的方差,噪声有较小的方差,信噪比就是信号与噪声的方差比,越大越好。因此我们认为,最好的 k 为特征既是将 n 维样本点转换为 k 维后,每一维上的样本方差都很大
PCA 处理图解如下:
降维转换后:
上图中的直线就是我们选取的特征向量,上面实例中PCA的过程就是将空间的2维的点投影到直线上。
那么问题来了,两幅图都是PCA的结果,哪一幅图比较好呢?
根据最大方差理论,答案是左边的图,其实也就是样本投影后间隔较大,容易区分。
其实从另一个角度看,左边的图每个点直线上的距离绝对值之和比右边的每个点到直线距离绝对值之和小,是不是有点曲线回归的感觉?其实从这个角度看,这就是最小误差理论:选择投影后误差最小的直线。
再回到上面的左图,也就是我们要求的最佳的 u ,前面说了,最佳的 u 也就是最佳的曲线,它能够使投影后的样本方差最大或者是误差最小。
另外,由于我们前面PCA算法第一步的时候已经执行对样本数据的每一维求均值,并让每个数据减去均值的预处理了,所以每个特征现在的均值都为0,投影到特征向量上后,均值也为0.因此方差为:
最佳投影直线就是特征值 λ 最大是对应的特征向量,其次是 λ 第二大对应的特征向量(求解的到的特征向量都是正交的)。其中 λ 就是我们的方差,也对应了我们前面的最大方差理论,也就是找到能够使投影后方差最大的直线。
Python实现
1.代码实现
伪代码如下(摘自机器学习实战):
2.代码下载
下载地址: https://github.com/jimenbian/PCA
loadDataSet函数是导入数据集。
PCA输入参数:参数一是输入的数据集,参数二是提取的维度。比如参数二设为1,那么就是返回了降到一维的矩阵。
PCA返回参数:参数一指的是返回的低维矩阵,对应于输入参数二。参数二对应的是移动坐标轴后的矩阵。
上一张图,绿色为原始数据,红色是提取的2维特征。
Matlab 实现
function [lowData,reconMat] = PCA(data,K)[row , col] = size(data);meanValue = mean(data);%varData = var(data,1,1);normData = data - repmat(meanValue,[row,1]);covMat = cov(normData(:,1),normData(:,2));%求取协方差矩阵[eigVect,eigVal] = eig(covMat);%求取特征值和特征向量[sortMat, sortIX] = sort(eigVal,'descend');[B,IX] = sort(sortMat(1,:),'descend');len = min(K,length(IX));eigVect(:,IX(1:1:len));lowData = normData * eigVect(:,IX(1:1:len));reconMat = (lowData * eigVect(:,IX(1:1:len))') + repmat(meanValue,[row,1]); % 将降维后的数据转换到新空间end
调用方式
function testPCA%%clcclearclose all%%filename = 'testSet.txt';K = 1;data = load(filename);[lowData,reconMat] = PCA(data,K);figurescatter(data(:,1),data(:,2),5,'r')hold onscatter(reconMat(:,1),reconMat(:,2),5)hold offend
效果图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10