京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何训练数据分析师的思维能力
一提到数据分析师这个职业,想必思维是被提及最多的一个词。这可能跟数据分析需要动用脑子、思考多,沟通理性有很大关系,让大家感到的错觉。
其实,每个工作都需要用头脑去分析,理性思考,接触事物不同、知识水平差别,才形成不同的思维,而数据分析师也是有一个不同的思维方式去处理数据。那么,数据分析师的思维到底是怎么形成的呢?今天,大圣众包小编就为大家讲讲如何训练数据分析师的思维能力!
作为一个从业多年的数据分析师,深知数据分析师的思维,并不是一日可形成,更多是结合自己的工作实践,遇到问题、解决问题、得出经验结论的一个长期过程。不过,刚刚踏入数据分析这个行列的菜鸟还是可以通过一些方法去训练思维,培养逻辑能力的。
1、多读书、多总结
读书要带着目的性去读书,比如若想训练逻辑思维,可以系统多看一些大牛的著作,特别是案例,看看别人是怎么思考,而你自己的想法是什么?从中对比为什么那些人会这个角度去思考,而我们认识不到呢?
读书是一个过程,不可能一蹴而就,学会思考找差异是重点,久而久之,便能多角度深层次去考虑问题!
2、多研究数据,举一反三
其实数据分析师经常面临跨领域,多种学科知识交错。作为企业数据分析师,从公司业务、财务状况、运营活动等等都要熟悉,因此,多研究数据、多研究其他公司的财报,分析其运营情况、公司发展模式和产品线等,另外分析其产品设计、体验,对比相同类型公司差异性在哪,孰优孰劣等,站在大局整体上去分析才能写出一份完整的多层次的数据报告。
总之,作为数据分析师,我们要学会举一反三的能力,透过一个点想到一个面,比如滴滴打车模式,是否适合我们呢?它的运作模式是怎样、盈利点在哪?透过这些去研究整个企业,然后自己结合业务是否可以借鉴呢?即使没有值得借鉴,即使错误,我们也都可以很好感知。
3、多追趋势,多联想
数据分析师虽不是运营或决策者,但数据分析师所做的工作往往会成为公司运营、决策的指南针。因此,数据分析师要有一根敏感的思维神经,不能“闭门造车”,而是需要时常关注经济、社会新闻动向,比如北京下大雨,云贵干旱,这是我们应该可以想到南北方需要的东西有什么不同,产品该怎么去推荐?当地人又需要什么样的服务呢?生活处处是学问啊!我们保持一颗追潮流之心。
数据分析师,入门并不难,现在很多学生或是转行希望从事数据工作,但数据工作并不是做做EXCEL表格,处理简单相加相减而已,更重要的是形成一个大局系统的思维,从中又缺乏细心敏感的心,才能把工作做好,而且也会提升自己的生活质量,办事能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04