京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析那么重要,不会怎么办
我们看数据时,很多时候会用直觉:判断哪里错误,哪里可以改进。其实直觉说白了就是经验,数据看多了,也就有了直觉(经验)。但对于一个新人来说,经验的确无法速成,直觉不能复制。所以数据分析小白一开始看数据时,或许可以尝试这么做。。
明确目的
无论是分析什么类型的数据,首先都要明确一点就是:目的。
问:“我想知道这次活动效果怎么样?” 这算目的吗?答:这是目的,但这不是一个明确的目的。
什么才叫明确的目的?比如:活动转化率、粉丝增长量、网站PV值等。
它不是一个模糊的概念,也不是一个可以模棱两可的情况。
如果你在数据分析时,觉得一头雾水,或整理了一大堆数据,好像知道自己要找什么,却又不知道该从哪里下手。
这就说明你的分析目的不明确。
所以这时应该要先想想:自己具体要什么,才知道接下来要去找什么,分析什么。
因为明确目的就是为了知道,接下来应该去获取什么数据。
如果目的不明确,就不会知道哪个变量是核心变量,也就不知道哪些数据分析出来,可以用来衡量效果。
获取数据
所以为什么要先明确分析目的,因为接下来才知道要去获取什么数据。
获取数据的方式通常有两种:
一是类似做活动、产品ab测这种,数据统计要经过开发,需要事先想好用什么数据来衡量效果。
这类数据在事先规划时,要注意是否去重,是统计人数还是次数,有没有其它影响数据的因素,是否可避开等等。
一种是类似文章阅读量、转发量这种,是依附第三方平台给的数据整理。
这类数据的获取就很简单,把第三方给的数据整理出来即可。
不过用第三方给的数据也有不足,就是会有所偏差,而这些偏差是我们不知道或无法判断的。
整理数据
首先,千万不要边整理边分析,因为那样效率真的很低!
然后,整理数据其实也是一门学问。
比如你可以把它整理成这个彩虹鸟样。
也可以整理成这样简单大方:(我就喜欢这样,但它不一定适用所有,字看不清就算了)
数据表的整理忌讳是:
1、密密麻麻2、色彩斑斓3、看数据时,找个数据要半天
如果实在不知道怎么整理才好看,那就遵从一个原则:简单点。
毕竟整理数据是为了更方便地看数据,也是为了更方便地分析数据有没有端倪。
平时也可以多看看其它各类设计,提高审美水平。因为审美这种东西,应用于万物。
分析数据
数据分析的目的一般有三种:
一是看数据有无异常,会不会影响数据统计;二是根据分析目的,得出结论;三是根据数据,得出结论之外的结论。
看数据有无异常,可以和之前的数据对比,或根据常态(比如没有人阅读,却有转发量)分析。
根据分析目的,得出结论。这就要结合产品或业务来分析,也和分析目的息息相关。
因为明确了分析目的,就知道要看什么数据。知道要看什么数据,就知道这些数据的起伏结果是正还是负。
而数据分析,不就是要分析目的效果是“正”还是“负”的问题么?
最后,根据数据,得出结论之外的结论,举个例子:
【栗子】
目的:分析脑洞运营某篇文章一周的阅读率结论:文章7天阅读率=XXX发现:在周末的阅读率会明显下降,说明用户在周末的阅读欲望较差,可能放假想放松不想学习。
这个发现就是在目的结论外的结论,而这个分析,真的理论无凭,实靠经验了。
得出结论
其实,数据分析的同时,也就在得出结论。
所以这一part,把上面的数据分析转换成文字,就行了哈哈哈哈哈哈~~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16