
数据分析那么重要,不会怎么办
我们看数据时,很多时候会用直觉:判断哪里错误,哪里可以改进。其实直觉说白了就是经验,数据看多了,也就有了直觉(经验)。但对于一个新人来说,经验的确无法速成,直觉不能复制。所以数据分析小白一开始看数据时,或许可以尝试这么做。。
明确目的
无论是分析什么类型的数据,首先都要明确一点就是:目的。
问:“我想知道这次活动效果怎么样?” 这算目的吗?答:这是目的,但这不是一个明确的目的。
什么才叫明确的目的?比如:活动转化率、粉丝增长量、网站PV值等。
它不是一个模糊的概念,也不是一个可以模棱两可的情况。
如果你在数据分析时,觉得一头雾水,或整理了一大堆数据,好像知道自己要找什么,却又不知道该从哪里下手。
这就说明你的分析目的不明确。
所以这时应该要先想想:自己具体要什么,才知道接下来要去找什么,分析什么。
因为明确目的就是为了知道,接下来应该去获取什么数据。
如果目的不明确,就不会知道哪个变量是核心变量,也就不知道哪些数据分析出来,可以用来衡量效果。
获取数据
所以为什么要先明确分析目的,因为接下来才知道要去获取什么数据。
获取数据的方式通常有两种:
一是类似做活动、产品ab测这种,数据统计要经过开发,需要事先想好用什么数据来衡量效果。
这类数据在事先规划时,要注意是否去重,是统计人数还是次数,有没有其它影响数据的因素,是否可避开等等。
一种是类似文章阅读量、转发量这种,是依附第三方平台给的数据整理。
这类数据的获取就很简单,把第三方给的数据整理出来即可。
不过用第三方给的数据也有不足,就是会有所偏差,而这些偏差是我们不知道或无法判断的。
整理数据
首先,千万不要边整理边分析,因为那样效率真的很低!
然后,整理数据其实也是一门学问。
比如你可以把它整理成这个彩虹鸟样。
也可以整理成这样简单大方:(我就喜欢这样,但它不一定适用所有,字看不清就算了)
数据表的整理忌讳是:
1、密密麻麻2、色彩斑斓3、看数据时,找个数据要半天
如果实在不知道怎么整理才好看,那就遵从一个原则:简单点。
毕竟整理数据是为了更方便地看数据,也是为了更方便地分析数据有没有端倪。
平时也可以多看看其它各类设计,提高审美水平。因为审美这种东西,应用于万物。
分析数据
数据分析的目的一般有三种:
一是看数据有无异常,会不会影响数据统计;二是根据分析目的,得出结论;三是根据数据,得出结论之外的结论。
看数据有无异常,可以和之前的数据对比,或根据常态(比如没有人阅读,却有转发量)分析。
根据分析目的,得出结论。这就要结合产品或业务来分析,也和分析目的息息相关。
因为明确了分析目的,就知道要看什么数据。知道要看什么数据,就知道这些数据的起伏结果是正还是负。
而数据分析,不就是要分析目的效果是“正”还是“负”的问题么?
最后,根据数据,得出结论之外的结论,举个例子:
【栗子】
目的:分析脑洞运营某篇文章一周的阅读率结论:文章7天阅读率=XXX发现:在周末的阅读率会明显下降,说明用户在周末的阅读欲望较差,可能放假想放松不想学习。
这个发现就是在目的结论外的结论,而这个分析,真的理论无凭,实靠经验了。
得出结论
其实,数据分析的同时,也就在得出结论。
所以这一part,把上面的数据分析转换成文字,就行了哈哈哈哈哈哈~~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01