京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“回归分析”是解析“注目变量”和“因于变量”并明确两者关系的统计方法。此时,我们把因子变量称为“说明变量”,把注目变量称为“目标变量址(被说明变量)”。清楚了回归分析的目的后,下面我们以回归分析预测法的步骤来说明什么是回归分析法:1.根据预测目标,确定自变量和因变量
明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。
2.建立回归预测模型
依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。
3.进行相关分析
什么是回归分析法回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。
4.检验回归预测模型,计算预测误差
回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。
5.计算并确定预测值
利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。
回归分析的目的大致可分为两种:第一,“预测”。预测目标变量,求解目标变量y和说明变量(x1,x2,…)的方程。
y=a0+b1x1+b2x2+…+bkxk+误差(方程A)
把方程A叫做(多元)回归方程或者(多元)回归模型。a0是y截距,b1,b2,…,bk是回归系数。当k=l时,只有1个说明变量,叫做一元回归方程。根据最小平方法求解最小误差平方和,非求出y截距和回归系数。若求解回归方程.分別代入x1,x2,…xk的数值,预测y的值。
第二,“因子分析”。因子分析是根据回归分析结果,得出各个自变量对目标变量产生的影响,因此,需要求出各个自变量的影响程度。
希望初学者在阅读接下来的文章之前,首先学习一元回归分析、相关分析、多元回归分析、数量化理论I等知识。
根据最小平方法,使用Excel求解y=a+bx中的a和b。那么什么是最小平方法?
分别从散点图的各个数据标记点,做一条平行于y轴的平行线,相交于图中直线(如下图)

平行线的长度在统计学中叫做“误差”或者‘残差”。误差(残差)是指分析结果的运算值和实际值之间的差。接这,求平行线长度曲平方值。可以把平方值看做边长等于平行线长度的正方形面积(如下图)

最后,求解所有正方形面积之和。确定使面积之和最小的a(截距)和b(回归系数)的值(如下图)。

使用Excel求解回归方程;“工具”→“数据分析”→“回归”,具体操作步骤将在后面的文章中具体会说明。
接着上节的回归分析的目的,我们来根据一个二手车的实例来继续说回归分析。二手车价格的决定因素有:空调类型有无附加品(TV导航导航SR、天窗、空气囊LD TV AW) 行驶距离,颜色车检剩余有效月数、评分拍卖会地点等。
在这14个因子(说明变量)中,最影响价格(目标变量)的是什么?最不影响价格的是什么?通过定量求出影响度,然后根据多个因子(说明变量)预测二手车价格(目标变量)。
可以用方程2表示。二手车价格“这个目标变量数据,既(“空调类型(AC WC)” “有无TV导航”、 、“行驶距离”、 。车检剩余有效月数”, “评分”)。
混合模型混台模型是指因子巾既包含定性数据也包含定量数据的模型。在混台模型中.把“空调”、 “TV导航”等定性因子叫做项目,把数据群(空调的“AC”,“WAC”,TV导航的“有”、“无”)叫做类别。
接下来,根据表l进行回归分析。
这节我们主要告诉大家回归分析前,我们需要先根据自己的思维来了解分析,把这些需要注意的先分析出来,这样对我们接下来的回归分析有很大的帮助。
经过上节,我们了解了回归分析前,我们要先通过思维分析出来需要注意的事项,那么今天接着上一节的课来了解下Excel回归分析需要注意的事项。包含的定性数据,不能直接使用Excel分析,需要将其转换成虚拟变量(也叫O,1数据)。例如, “空调(AC、WAC)”的数据,“AC”用“1”,“WAC”用“O”表示。同样地,“导航(有导航、无导航)”的数据, “有导航”用“1”, “无导航”用“O”表示。表1是根据这种方法转换的(0,1)数据表。直接使用Excel的对表1进行回归分析时,运算结果不理想。理由如下;

以“导航”为例,各行“有导航”+“无导航”=1
此式成立。把公式变形,
“有导航”=1-“无导航”
所以“有导航”是“0”或是“1”,由“无导航。自动决定。
线性代数中发生秩(矩阵秩)亏时,不能正确求出必要的逆矩阵。因此也不能求出回归系数。
由于上述原因,进行回归分析时,需要从各个项目中删除—列因子(表2)。
根据表2的数据进行回归分析,操作步骤如下:1、“工具”一“数据分析”
2、在弹出的“数据分析”对话框中选择“回归”,单击“确定”(图1)。

3、点击“回归”对话框的“Y值输入区域”,选择“二手车价格”的列数据,包括项目名称;接着点击“X值输入区域”,选择从“AC”到“中国、四国、九州”的区域,包括项目名称;选中。标志”,单击“确定”。
(图2)

系统弹出错误信息,不能进行回归分析(图3)。这是因为Excel回归自由度的最大上限是16(P62小知识)。这里的回归自由度是22,因此不能进行回归分析。

统计学中经常出现“自由度”,即有效信息的数量。前面已经提到,在Excel的回归分析中,回归自由度的最大上限是16。回归自由度在(多重)回归分析、数量化理论|、混合模型中具有不同意义。表3是对回归自由度的不同意义的总结。
我们在前面提到过,当回归自由度在17以上时,Excel无法进行回归分析,那么就需要分两次进行回归分析。第一次,把“空调”、“TV导航”、“导航”、“SR”、“天窗”、“空气囊”、“LD”、“TV”、“AW”作为说明变量(表1),第二次,把“颜色”、“拍卖会地点”、“行驶距离”、“车检剩余有效月数”、“评分”作为说明变量(表2),目标变量都是“二手车价格”。

对表1、表2进行回归分析。回归分析的结果分别如表3、表4所示(具体操作步骤将在下一节详细说明)。
图3
图4
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22