
数据分析没效果,是因为缺少这4种提升!
在数据分析过程中,会遇到各种瓶颈,除去自身技能,分析的内容本身还有很多讲究,你的很多分析反映不出实质,解决不了问题,往往是缺少以下四种提升。
深度
深度是指数据分析对企业的支持程度,当企业面临决策难题时,数据分析要有深度,需要理清楚这三个问题:企业的现状和问题是什么?问题为什么会产生?该怎么解决?
比如某数据分析师做得满意度分析
这样的分析远远不够,虽然通过分析,利用“满意度”来衡量出了各关键指标的大小,但是这样的分析并没有暴露提出哪些指标需要改进,也没有分析和竞争对手相比,满意度水平处在什么地位。
于是,将这样的满意度分析通过象限图展示,增加了重要性维度,就能很明显看出需要改进的地方。
接下来与竞争对手相比,处于水平,可以再增加一系列,可得出结论A的整体表现优于B,但在品类和宣传方面需要改进。
之后可以再细化,从数据上寻找是哪个细化指标的表现使宣传满意度最低。宣传覆盖面和宣传频率,所以接下来就要着手这两方面的问题解决了。
信度
信度是指分析结果的可靠程度,需要满足对比要可比、差异要显著、描述要全面。
1、对比要可比
比如A国与B国交战时期,A国军员的死亡率是9%,居民死亡率是16%,后来征兵是就以这些数据来证明参军更安全,显然不可靠。因为这两个数字的计算基数是不同的,韩军死亡率的基数是身强力壮的军人,而居民死亡率的基数包括了老弱病残者。
2、差异要显著
尤其是企业在利用大数据做精细化分析时,往往要用数据来理解不同指标的差异。那么数据差异多大才能表明不同用户间崔在差异呢?
能否根据满意度的排序就断定低收入者对商场最满意,高收入者最不满意,显然不行,收入这一因素并没有做对照分析,应该列出同一收入水平,其他因素对满意度的影响。
3、描述要全面
最有代表性的例子就是全国平均水平,平均工资只能反映工资的平均水平,并不能刻画工资水平的差异,平均工资的增长并不能以为着每个人真是收入的增长。
效度
效度是指分析的效率,效率的衡量标准有两个:速度和成本,这方面,社交网络分析更效度。
传染病分析的传统方法是国家疾病控制中心从医生、实验室那里收集数据分析疾病的流行性和发病率。当不同的病人在不同地方被诊断时,所有数据经过一定的延迟后,都送到一个中心数据库。几个星期之后,你才会知道你身边的传染病还在什么地方发生了。这样的分析显然是滞后和无效的。无法起到传染病的预警效果。社交网络分析则不同。社交网络分析思路是处在社交网络中心且连接数目较多的中心群体比随机人群更容易影响外界和受到外界的影响。按照这一思路,中心群体比随机人群更容易受到传染病的感染,因此,在同一段时间内中心群体的感染率更大。
通度
数据分析前要了解需求,后期要呈现分析结果。通度即沟通的通畅度,通度高低直接影响数据价值的发挥水平。
提高数据分析的通度有三个原则:
1、能用图表就不用数据
比如左右两边的数据对比
2、能用图片就不用文字
与文字相比,图片更色调化,图表数据图形化的创新,更能让人们产生视觉冲击。
3、能用动态呈现就不用静态
在表达失误随时间的变化而变化时,动态呈现能还原真实,比静态展示更能让人产生身临其境之感.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07