京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析如何帮产品实现用户增长
腾讯深度报告,2016年,75%的消费者仍计划保持或增加消费支出。随着人们收入水平的提升,消费者愿意花费更高的价格来购买提高生活品质的产品与服务。对于商家而言,他们拥有多种机会吸引日渐成熟的消费者,解决他们对当前生活的不满。
举例来说,健康对于所有城市消费者而言都很重要,但是大城市上层中产阶层及富裕消费者在食品,特别是高品质的食品以及高品质的服务上花费的更多。 于是一些针对高端人群的产品应运而生。
例如针对一线白领等高端人群推出的高端餐饮电商类产品—ENJOY,为用户提供了一些经过精心筛选的餐饮产品,提供独特而稀缺的用餐体验,希望在“如何吃得更好”这一问题上为大家提供一些富有情感的食物解决方案。
随着平台上食物品类以及服务的增多,频繁给用户推送消息,由于用户的需求各不相同,给用户带来了极大的伤害。一部分人深受其害而狠狠卸载掉。对于一款产品来说,用户的严重流失是一个无法容忍的事。可是,不推送,用户无法第一时间知道平台上了什么新的品类;推送了,用户频频被消息打扰。
是否可以提供一个两全其美的方法——既可以给用户推送消息,还能够让他们看到推送的第一时间是欣喜而不是厌恶呢?
两全其美的好方法当然有——个性化推荐。
通过分析用户行为,根据用户喜好,为他们推送与之对应的产品优惠活动等消息,来吸引用户,从而提升用户留存。
用户行为路径分析是互联网行业特有的一类数据分析方法,所依赖的数据主要是服务器中的日志数据。
用户在使用App过程中的每一步都可以被记录下来,分析用户在APP或者网站中各个模块的流转规律与特点,挖掘用户的点击模式,使得用户可以便捷地依照产品设计的期望主流路径直达核心模块,这时候需要关注的便是优秀的布点策略。
通过一款基于用户洞察的精细化运营分析工具,将SDK集成到App或网站中,便能获得应用内的所有用户行为数据。
笔者认为在每个App里,不是所有事件都有着同样的价值,基于对核心事件的深度分析需求,笔者推荐大家使用层级化的自定义事件布点方式,每一个事件由三个层次组成的:事件(Event)、属性(Key)和属性值(Value)。同时,还为开发者们提供数据监测布点咨询服务,可以根据丰富的行业经验为客户提供个性化的事件布点咨询和技术支持。
分析用户行为,为用户推荐喜欢的内容,给运营策略的优化提供了科学指导,提升留存率。 一款电商类产品,订单价、订单数、支付数是运营最看中的数据。例如ENJOY,操作它的路径如图:
从其中一条路径中选取几个重要的行为建立行为漏斗。
漏斗模型通常是对用户在网站或App中一系列关键节点的转化率的描述,这些关键节点往往是我们人为指定的。
例如我们可以看到某购物App应用的购买行为的漏斗转化情况。这款购物App平台上,买家从浏览到支付成功经历了4个关键节点,商品浏览、加入购物车、结算、付款成功,从步骤1到步骤4,经历了其关键节点的人群越来越少,节点的转化率呈现出一个漏斗状的情形,我们可以针对各个环节的转化效率、运营效果及过程进行监控和管理,对于转化率较低的环节进行针对性的深入分析与改进。
其他的漏斗模型分析场景可以根据业务需求灵活运用,它拥有十分强大的漏斗分析工具,是您充分发挥自己对于数据的想象力的平台。
接下来就可以查看漏斗分析的结果了:
产品关键模块的转化率,对运营来说是一项很重要指标,运营人员的职责之一就是不断的提升重要的使用过程的转化率,来提升产品的留存率。
数据分析,是企业成长道路上,用来发现问题,提升运营效率的利器。而这些问题中,最值得被重视的就是留存率分析。
无论有多少新增用户,最终决定企业成功与否的,是用户的留存率与变现能力。花了一个周拉来1000用户,两三天后只有不足50人继续活跃,如果你不知道用户的流失原因,就无从下手去唤回流失的950多个用户,进而就演变成需要拉来20多新增才能增添一个长期活跃,然而变现率又能占长期活跃的多少呢?
这也是为什么,越来越多地企业对用户的CLV(生命周期价值)重视起来并进行分析:
通过路径分析,对每一个用户的每一个行为路径(商品浏览、加入购物车、结算、付款成功)进行跟踪与记录,在此基础上分析挖掘用户路径行为特点,清楚的了解每一步的来源与去向、每一步的转化率,从而根据用户喜好为他们进行针对性推荐。
通过漏斗模型,简单直观计算并展示出事件之间的转化率,为运营优化提供直观的数据,方便运营了解个性化推荐后的效果。
如此,践行用户为核心的生命周期价值分析。这样的分析价值将会成为未来创新企业的制胜法宝。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19