京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析技术:数据差异的显著性检验
数据差异的显著性检验是数据分析的重要技术之一。然而,如何正确选择检验方法是很多初学者困惑和容易出现错误的地方。下面为大家总结一下数据差异显著性检验的方法及适用范围。
显著性检验
首先需要理解什么是数据差异的显著性检验。在数据分析中,如果仅仅基于个案(某个数据)的采样数据是没有很强说服力的。例如:一种新药,不能因为一个人使用后,效果良好就大面积地推广,而应该基于大规模的样本判定这种新药是否有效,这就需要验证在大规模样本中实验组数据是否优于对照组数据,二者是否存在显著性的差别。显著性检验的理论就是在这种具体需求下提出来的。
所谓数据差异的显著性检验,是面向两组或多组数据的一种数据分析方法,其目的是对两组数据之间是否存在显著的差异进行判断。一般来说,两组观测数据不可能完全相同,肯定存在或多或少的差异,但研究者关心的是两组数据的差异是否显著。如果差异显著,就可以说两组数据之间存在显著性差异;否则,它们之间的差异不显著,甚至可以说是无差别。
数据差异的显著性可以运用在各类科学研究中,例如,在教学研究中,研究者可以研究某种教学法是否有效。在医学领域,可以研究某种新药是否对患者有效等等。
数据的分类
数据类型的不同,将直接影响到差异显著性检验的使用方法。数据主要可以分成三类:定距变量,定序变量和定类变量。
定类变量:根据定性的原则区分总体中个案类别的变量。定类变量的值只能把研究对象分类,只能决定研究对象是同类或不同类,例如:性别分为男性和女性两类;出生地区分为农村、城市、城镇三类;民族背景分为汉、蒙、回、苗、壮、藏、维吾尔等;婚姻状况分为未婚、已婚、分居、离婚、丧偶等类。
定序变量:区别同一类的个案中等级次序的变量。变量的值能把研究对象排列高低或大小,它是比定类变量层次更高的变量,也具有定类变量的特点,例如:文化程度可以分为大学、高中、初中、小学、文盲;工厂规模可以分为大、中、小;年龄可以分为老、中、青。这些变量的值,既可以区分异同,也可以区别高低或大小。但是,各个定序变量的值之间没有确切的间隔距离,比如大学究竟比高中高出多少,是没有确切的尺度来测量的。
定距变量:区别同一类别个案中等级次序及其距离的变量。它除了包括定序变量的特性外,还能确切测量出个案之间高低、大小次序之间的距离。
定距变量是最常见、区分度最高的变量,这类变量可以被求取均值、方差、标准差和标准误等描述性信息,在数据分析中最受欢迎,被称为高测度数据。定序变量和定类变量则因为数据的特点,通常无法求取它们的均值和方差等信息,被称为低测度数据,需要采用与定距变量不同的分析技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22