
以汽车行业为载体,通过对具体业务需求的理解与梳理,转化为数据分析问题,进行数据建模,将输出的结果应用到业务中,对业务提供支持(建议,预测,判断等等)。当然了,数据分析与挖掘的过程也是持续地与业务碰撞的过程,这是一个反复建模分析,反复验证解释的过程。此次分享的内容以解决思路为主。
行业知识铺垫
数据挖掘是以业务为核心。因为业务决定了数据分析与挖掘的方向与重心。
每一个行业都有一个所谓的客户生命周期,对于汽车行业来说,客户生命周期是,认知、需求、选车、购车、用车、修车、换车。见下图:
每一个点表示的是,客户在不同的生命周期阶段所获取信息或服务的途径。而我们的目标是在客户生命周期每个阶段均采取针对性措施增加客户价值(为客户增加价值就是增加每一个客户对企业的生命价值)。目标分解:增加客户的生命时间增加每一次与客户互动所得的收入。
具体案例场景(客户流失预警分析)
背景:客户流失的危害:1,盈利损失:客户忠诚度下降,企业利润下降;2,口碑损失:60%新客户参考现有客户的推荐;一个不满的客户扩散范围大5-6倍(与满意客户比);3,成本增加:开发一个新客户成本=维系六个老客户成本。需要回答的问题:哪些客户流失了?什么时候流失?流失客户价值如何?回答以上问题,就可以对即将流失客户做相应的动作给予挽回(数据对业务的支持)。
解决思路
切记:解决问题过程的每一步都要与业务进行碰撞(特征的探索,建立模型时候的参数及区间的设定等等),业务诉求及结论需要数据分析进行支持,数据分析结果(探索的结果)需要业务进行验证解释。
步骤:1,根据业务梳理所需指标;2,了解各字段来源,权重分配与评分方式确立;3,建立模型,验证优化; 4,根据结果提出相应建议(跟踪时间,优惠点等等)(略)
建模思路:1,筛选客户消费频次,金额,推荐等特征,建立客户价值分类模型,2,对比已流失用户与保有用户,寻找显著特征;3,依据筛选出的特征,建立流失预警模型; 4,结合分类模型与流失模型,对用户进行差异性营销。其实这个是两个模型的结合:1.客户价值分析(模型):客户价值区分(根据历史消费行为等记录,测算当前价值,对客户进行区分)。2.流失预警分析(模型):依据客户历史维保周期等信息,及时预警超期未进店客户。
我们从两个维度进行构建客户价值分析(模型)。物质价值(以客户消费的相关数据为依据,反应客户带给企业的货币形式的价值)和情感价值(以客户与车型品牌的互动的相关数据为依据,反应客户对车型品牌的依赖度、忠诚度等非货币形式的价值)。支撑物质价值的字段包括:维保金额,维保频次,最近维保时间等;支撑情感价值的字段包括:年均积分获取次数,年均积分使用次数,年均参加活动次数,投诉记录,推荐购车等等。以上是提取字段,接下来是衍生字段(如年均次数等)(略)
模型是k-means聚类
将客户按价值分为高中低等(具体字段不赘述)。
客户流失模型
就当前时间点而言,最后一次进店时间距当前时间大于等于12个月,标记为流失,最后一次进店时间距当前时间小于12个月,标记为未流失。60%放入训练集,40%放入测试集。模型为决策树。同时我们对已流失客户进行特征提取,分析如下:
流失集中在2年左右的时间。
车龄三年的用户流失比重达25%,车龄五年以上用户已经有近半流失。
同时,流失前也伴随着某些特征:
1. 流失前后有明显的积分获取使用的频次下降。
2. 流失用户金额波动更大,多经历高维保金额
3. 流失用户流失前最后一次进店原因为‘事故车’比率达22%,更换常去经销商比率为15%。
我们将两个模型导出的结果标识(每一条记录都有标识)进行取交集操作,如下图所示
我们会对量化后的指标进行离散化处理(将具体的定量指标定义为定性指标)。下一步就是将数据进行打包,附上针对性的跟踪服务建议,下发经销商,相关人员进行跟踪反馈,因为牵扯面太大(区域,人员等等),对跟踪反馈结果的收集难度很大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29