我一直信奉古人名言:「工欲善其事,必先利其器」。因此,我经常地,不停地变换我手中的工具。一种方法在某工具里不好实现时,我换个工具;一种统计图形在某软件里不好实现时,我再换工具!久而久之,我感觉自己什么 ...
2016-04-14
大数据分析,利用向外扩展技术深入挖掘商业价值 大数据分析技术的价值在企业领域已经非常明确。充分利用良好信息的能力一直是摆在IT部门面前的重要难题与挑战。现在我们已经拥有了足以解决这一难题的工具,接下 ...
2016-04-14
数据科学的线性模型导论 数据科学是一个新的领域,想做一个好的数据科学家并不容易。他们应该知道什么?工具,框架和技术都在不断变化。在这种转型之中科学家可以通过掌握最有用的工具之一“应用统计:线 ...
2016-04-13
数据挖掘:产品商用需测试,可用测试验原型 第四时期产品测试是在新产品开发完成以后,为了获取用户对产品的功能、性能等方面的评价,通常会事先邀请符合目标用户特征的潜在用户试用该产品,以便进一步完善 ...
2016-04-13
漫谈数据挖掘:用户招募选样本,发现问题给建议 用户招募是可用性测试中的一个重要环节,且具有一定难度。为了达到良好效果,需要进行科学系统的规划和筹备。一次可用性测试至少要保证10名左右的测试用户 ...
2016-04-13
日前和几个BD朋友聊天,听到说“现在很多渠道投放的效果犹如雾里看花,点击很多,激活很少,留存更是骨感……”想到自己对当下的统计后台还算了解,所以想从数据角度讲下渠道效果分析的几点经验。 几乎所有的运营 ...
2016-04-13
如何建立时间序列预测模型? 1. 背景 先来看两个例子,下面两幅图展示了百度在趋势预测方面的应用案例,一个是世界杯期间的比赛输赢预测,另一个是北京各旅游景区的游客人数预测。 这两幅图代表了 ...
2016-04-13
统计学和数据挖掘的异同探讨 1. 简介 统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家)认为数据挖掘是统计学的分支。这是一个不切合实际的看法。因 ...
2016-04-13
朴素贝叶斯分类和预测算法的原理及实现 决策树和朴素贝叶斯是最常用的两种分类算法,本篇文章介绍朴素贝叶斯算法。贝叶斯定理是以英国数学家贝叶斯命名,用来解决两个条件概率之间的关系问题。简单的说就是在已 ...
2016-04-13做产品数据分析的六点体会 1、有意义的数据极其有必要,这里的有意义指a.精度有意义,精度太高很不必要代价太大精度低了那和没有数据也是一样。b 指向有意义,这个就需要丰富的经验来把握,哪里去获得数据?和 ...
2016-04-12
要做数据分析?先学会“三看” 数据分析重要的是模型,说白点就是知道要什么数据,了解数据走势,懂得如何分析。在数据分析呈现后,要根据分析得出结论,结论中需要用简单明了的语言表明出现的问题,导致问题的 ...
2016-04-12
数据分析六部曲及数据分析的四大误区 什么是数据分析?数据分析是用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析的目的?把 ...
2016-04-12
企业需要什么样的数据科学家 大数据是当今最热门的IT概念,存储、处理、分析大数据的解决方案都层出不穷,Hadoop更是让企业低成本处理大数据成为可能,但是大数据最大的问题不是工具,而是人才短缺。数据科学家 ...
2016-04-12
福特首席数据科学家谈三点大数据经验 数据已经成了福特公司的“燃油”,从产品设计到商业智能,从汽车部件到社交网络上的用户,福特公司每天需要处理海量且快速增长的数据。今日福特公司首席数据官Michael ...
2016-04-12
机器学习—海量数据挖掘解决方案 大数据时代里,互联网用户每天都会直接或间接使用到大数据技术的成果,直接面向用户的比如搜索引擎的排序结果,间接影响用户的比如网络游戏的流失用户预测、支付平台的欺 ...
2016-04-12
之前有很多人问我,如何我在excel数据跟着图动起来,最初我在接触excel的时候,看到别人做的这样的图,我是羡慕的不要不要的,最近几篇,就来分享一下我对动态图的一些做法吧。 今天的分享的是利用“窗体控件”中 ...
2016-04-11
从数据角度深入挖掘客户价值 对于沃尔玛、华润万家、百佳等零售大超市而言,每天都有很多客户通过会员卡进行购买,不断积累了很多销售数据,如何利用这些行业数据,从数据中挖掘金矿,很值得每个商家去思考 ...
2016-04-11
数据分析:手把手教你做客户价值分群 当前各企业对客户关系管理(CRM)显得尤为关注,只有不断地保留并增加老客户黏性及挖掘潜客新客户,才能使企业生存的更好,更久。说到CRM,我刚开始接触的就是RFM模型,通过 ...
2016-04-11
简单粗暴的教你如何快速入坑数据分析? 在此分享一下入行数据分析,如何到一个相对较好的职业,规划自己的职业生涯。 最重要的事(没有之一)——看招聘启事 从招聘启事可以大概感知企业的架构 以 ...
2016-04-11
使用R语言实现数据分段 今天跟大家讲讲我工作中用到的数据分段,数据分段一般在什么地方会使用到呢?评分。之前写过一篇《实战: RFM》模型使用,那篇文章就详细介绍了CRM(客户关系管理)分析中关于RFM的应用。 ...
2016-04-11当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24