基于用户的协同过滤推荐算法原理和实现 在推荐系统众多方法中,基于用户的协同过滤推荐算法是最早诞生的,原理也较为简单。该算法1992年提出并用于邮件过滤系统,两年后1994年被 GroupLens 用于新闻过滤。一直 ...
2016-04-17使用SAS进行简单的聚类分析讲解 聚类分析的目的是把分类对象按一定的规则分成若干类,这些类不是事先给定的,而是根据数据的特征确定的,对类的数目和类的结构不必作任何的假定。在同一类里的这些对象在某种意 ...
2016-04-17SAS中的聚类分析方法总结 说起聚类分析,相信很多人并不陌生。这篇原创博客我想简单说一下我所理解的聚类分析,欢迎各位高手不吝赐教和拍砖。 按照正常的思路,我大概会说如下几个问题: 1. 什么是聚类分 ...
2016-04-17R语言 apply函数家族详解 apply {base} 通过对数组或者矩阵的一个维度使用函数生成值得列表或者数组、向量。 apply(X, MARGIN, FUN, …) X阵列,包括矩阵 MARGIN1表示矩阵行,2表示矩阵列 ...
2016-04-17如何写一份好的数据分析报告/邮件 在谈这个问题之前先说说写一份好的数据分析报告/邮件的重要性,很简单,因为分析报告的输出是是你整个分析过程的成果,是评定一个产品一个运营事件的定性结论,很可能是产品 ...
2016-04-16打造顶级大数据团队的几个偏方 出人意料的是,音乐人才、物理学家和工商管理人士能为大数据团队带来全新的视角。你的企业正在打造数据科学团队吗?首先,你应当从业务部门抽调专家来提出正确的问题。然后 ...
2016-04-16互联网数据分析对于优化客户体验的重要性 互联网的数据分析将人为的感性判断转化为定量分析,在提升客户体验上发挥着重要的作用。笔者一直相信数字的“语言”,数字是最能直观的反映业绩的一个衡量标准,而 ...
2016-04-16数据分析的关键是制定聪明的决策 有一句经典语录:“我的广告费有一半浪费掉了,但我不知道是哪一半。”,来自于John Wanamaker,1900年代早期的一位美国百货商店商人。数据分析可以找出到底哪一半投资是浪费掉 ...
2016-04-16数据分析和用户研究 关于数据分析和用户研究,粗浅的说点我的理解: 各网站常见的PV分析,是对大量数据样本的统计分析。算是定量的研究;而淘宝目前的用户研究,一直采用小样本方式。算是定性的研究。 ...
2016-04-16从道、器、术三个维度,说说新手如何做数据运营规划 道-数据在产品的价值 数据可以帮助品牌发现机遇,如新客户、新市场、新规律、回避风险、潜在威胁等,同时亦可以有助于品牌营销决策的调整与优化。数 ...
2016-04-16机器学习&统计模型&数据挖掘的差别是什么 在各种各样的数据科学论坛上这样一个问题经常被问到——机器学习和统计模型的差别是什么?这确实是一个难以回答的问题。考虑到机器学习和统计模型解决问题的相似性,两 ...
2016-04-15如何构建有指导的数据挖掘模型案例分享 数据挖掘的目的,就是从数据中找到更多的优质用户。接着上篇继续探讨有指导数据挖掘方法模型。什么是有指导的数据挖掘方法模型,以及数据挖掘如何构建模型。在构建一个有 ...
2016-04-15十个问题让你了解数据挖掘工程师 对于如何学习大数据技能?大多资深数据分析师都会建议在学习书本的基础上参加竞赛,从实践中发现问题提升自己。今天跟我们分享的就是一位长期参加比赛的数据挖掘工程师,他有四 ...
2016-04-15想使用 MongoDB ,你应该了解这8个方面! 应用性能高低依赖于数据库性能,MongoDB 是一个基于分布式文件存储的数据库。由 C++ 语言编写,旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介 ...
2016-04-15如何优化分析架构优化酒店搜索结果? 最近,Expedia集团推出的“加速器”项目引起了旅游业关于利用搜索结果排名变现的讨论。Expedia的“加速器”项目中,酒店品牌可以支付更高的佣金给Expedia,从而提升在搜索 ...
2016-04-15营销归因分析 最近,在与密切合作的分析公司的“午餐+学习”的演讲会上,出乎意料的令人震惊和振奋。我们在一个引人注目的时刻。新的分析技术发展允许我们研究行为中非常深入和复杂的模式。然而更加难以抵 ...
2016-04-15Excel整合SharePoint打造轻量级BI解决方案 本文将带您走进BI世界,并向您讲述如何使SharePoint2007结合Excel提供一个轻量级的BI解决方案。这一点对于渴望使用电子表格的用户极为重要。在本文中的例子截取 ...
2016-04-14数据可视化效果若干经验与资料分享 文章通过介绍Visualization 即可视化,罗列了数据的展现方式。对于数据分析最困难的一部分就是数据的展示,解读数据之间的关系,清晰有效的传达并且沟通数据信息。 ...
2016-04-14大数据应用 信用评分及模型原理解析 虽然人人都可以通过对借款方在Lending Club和Prosper上的历史借贷数据进行分析,但我相信,了解消费信贷行为、评分机制和贷款决策背后的工作原理可以帮助投资人更好的在市场 ...
2016-04-14大数据分析五步法:以新经济指数为例 当下,大数据已经上升到国家战略。2016年3月17日出炉的《国民经济和社会发展十三五个五年计划规划纲要》提出,要“实施国家大数据战略,把大数据作为基础性战略资源,全面 ...
2016-04-14在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10