
文章通过介绍Visualization 即可视化,罗列了数据的展现方式。对于数据分析最困难的一部分就是数据的展示,解读数据之间的关系,清晰有效的传达并且沟通数据信息。
对于数据挖掘,我们可以通过文中对数据可视化的案例找到分析数据、展现数据的方法和思路。
Data visualization 是一件很有趣的事情。最近在尝试处理数据,便顺手翻了翻 visualization 的进展,然后除了 IBM 大名鼎鼎的的 many-eyes 。
还有一个比较好有意思的网站是visualizing。Visualizing 跟 many-eyes 很像,都是社区形式的网站,用户可以注册然后上传,而且网站还有积累下来的很多数据供用户使用。
当然我不是为了介绍这个网站才写这篇 post 的,写 post 是一个记笔记的过程,如果我不能从中学到什么,就有点浪费时间了。下面进入正题,我尝试总结一下 visualization 的时候的几个可用的经验。
从 visualizing.org 的分类中提取出来的有用的形式包括(不过说实话这样分类并不是很好用)
要可视化的数据可以分几类(我想的不全面,欢迎补充,共同学习)
写成 A↔B 粗体的拉丁字母表示一系列对象,比如一系列地点。
这种情况下因为要展示数据之间相互关系,所以实质上是一个 network 图,不过通过一些技巧可以把简单的 network 图变成更好的形式。
方式一:使用转换成 flow 图。通过把对象列出两遍来是的原本应该是一个比较复杂难以看清的 network 变成了清晰易查找的 flow。
这类图中我喜欢的一个是 people moving 的 flow
这个 flow 图非常好的展示了从一个国家移民到另一个国家,上面的截图就是人们移居(migrate,是移民么?)到加拿大的情况,可以看到中国(CH)移民到加拿大的还是比较多的。通过这样的 flow,我们可以很容易很直观的分析数据。
方式二:圈形的 network 图。为什么要做出圈形呢?因为圈形可以使得连线集中在圈内部,而且可以减少数据交叉。通过 interactive design,可以使得连线无交叉。比如这个 Migrants moving money:
这个截图是中国的侨款,也就是中国移民所寄回祖国中国的钱数。可以看排除香港地区,美国是最大的来源。
事实上这种方法与第一种本质是相同的。
方式三:network 图。通过点和连线来关联。例子比如Attractions of Councils: WEF GAC interlink survey
但是这个图实际上并不好。而且有时候,线条是可以去掉的,比如这个国际航班的可视化:
Click a nation to see all connected nations via flights. Click again to see arranged nations based on the distance. Double-click the background to reset.
截图:
方式四:使用 table。不过为了更直观,使用面积等方式来代表数据的大小。
比如 10 个人任意两个人之间相互按照对对方的好感程度打分,为了展示任意两个人 A 和 B 之间相互的好感程度,可以使用颜色柱来展示,选定一个作为两个人好感程度相同,颜色柱之上的颜色表示 A 对 B 的好感大于 B 对 A 的好感,反之亦然。
这里有个 council 之间的例子,截图如下:
就是 Hierarchy 图,不过有时候可以省掉连线。
比如这个 soft drink 的 hierarchy 图
从这张截图立刻可以看到 coca-cola 和 pepsi 的庞大,通过原网页可以自由的放大缩小来查看不同的公司的产品。
这样的 hierarchy 图要比单调的并列的整整齐齐的列举要包含了更多的信息,因为圆圈的大小可以表示数据的一个维度,甚至还可以引入颜色等等来表示更多的维度。
方式一:使用 Histogram。这是比较经典的选择,即使用矩形或者线条的长度来表示数据的大小。例如这个关于能源的 visualization
方式二:使用树图(Tree map),使用面积表示数据的大小。这里有个 UN 的 Global Pulse Visualization 的例子:
方式三:使用散点,使用散点的大小或者颜色等属性来表示数据的大小。
一个很优秀的例子是学生坐座位习惯的例子,截图:
事实上 tag page 也是属于这类,我们可以通过每个 tag 的大小颜色等等来标示数据的大小。
除了可以使用上面说提到的方式,对于坐标数据,有个特点是可以绘制地图(Map),而 Map 可以与其他形式结合,比如 flow。一个比较好的例子是关于我们坐飞机的一张图,截图如下:
图片上部的地图是飞行的出发城市,下部的地图是终点城市。更多内容可以查看UCSB的这个站点,其中提供了 demo 软件。
前些时候,以为天文学家 Goodman 写过一篇关于高维天文数据可视化的论文,其中提到了 linked views 很重要,就是说我们要多种可视化方式联合起来展示数据,我截取论文中一张图片来说明。
不同的 visualization 结合起来对数据进行多角度的呈现,可以使我们对数据有更深刻的理解。所以 data mining 实际上是一个应用非常广泛的专业,一个 data mining 专业的学生在现在这种天文专业被大量数据所轰炸真是个宝贝啊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29