SPSS常用函数 SPSS函数 是一个常用程序(rountine),并且利用一个或多个自变量(参数)来执行。每个SPSS函数均有一个关键名称(keywordname),且绝不能写错。通常,函数的格式为:函数名称(自变量,自变量,……) ...
2016-04-24在SAS中进行数据挖掘之关联规则 SAS系统被誉为国际上的标准软件系统,本文将详细介绍如何在SAS/EM模块中进行关联规则数据挖掘,使用的软件版本是SAS 9.1.3下的Enterprise Miner 4.3: 从SAS顶端的【解决 ...
2016-04-24数据模型梳理:一个自下而上的数据治理方法 一、数据模型梳理背景 我们在传统企业(如电信、航空、电力、政府等)实施一个个数据治理项目的时候,总会发现基本类似的问题: ●企业内IT系统越来越多,其复 ...
2016-04-23初级数据分析师职业要求 小白:那怎样才能成为一名优秀的数据分析师呢?数据分析师的职业要求又有哪些? Mr.林:你的问题可以用五懂来回答,即懂业务、懂管理、懂分析、懂工具、还要懂设计。 1. 懂业 ...
2016-04-23关于数据挖掘和数据分析 1、很多关于数据挖掘的帖子和文章都在强调工具、算法和架构等,但其实这些都不是数据挖掘的核心,数据挖掘的最重要的环节如下: 数据来源:通过无论是公开的数据还是合作方式、第三 ...
2016-04-23数据分析师的烦恼,找呀找呀找数据! 数据分析师听起来是高大上的职位,实际上做的都是苦逼的事儿。而在大数据时代背景下,不会使用大数据分析工具为自己分忧的数据分析师才是真正的苦逼。 1.找呀找呀 ...
2016-04-23企业进行市场营销,该用数据分析什么? 大数据时代,对于企业而言,把握数据信息是实现高效的营销重要方式。面临纷繁的数据,当我们的产品在进入市场之前,需要着重对哪些数据进行调研和分析呢?下面这份决策分 ...
2016-04-23掌握8项技能让你拥有数据科学岗位 你想找到一份数据科学家的工作吗?如果你有这样的想法的话,那么你就有伴儿了。最近由Thomas Davenport和D.J. Patil在《哈佛商业周刊》上面发表了一篇专栏,文章称“数据科 ...
2016-04-23数据库和数据仓库的区别 数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。 数据库设计是尽量避免冗余,一般采用符合范式的规则来设计 ...
2016-04-22大数据分析5大趋势 目前,大数据分析是一个非常热门的行业,一夜间,似乎企业的数据已经价值连城。企业都在开始尝试利用大数据来增强自己的企业业务竞争力,但是对于大数据分析行业来说,仍然处于快速发展 ...
2016-04-22组成数据分析师完整知识结构的七大板块 作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。 ...
2016-04-22常见的几种“分析”概念 在业务实践中,有很多“分析”概念会让大家感到疑惑,从而直接影响从业者的职业规划,其包括职业定位、发展路线等。因此有必要将几种最常见的“分析”概念进行介绍,为大家今后的职 ...
2016-04-22数据分析的流程及分析方法 数据分析是指通过建立审计分析模型对数据进行核对、检查、复算、判断等操作,将被审计单位数据的现实状态与理想状态进行比较,从而发现审计线索,搜集审计证据的过程,在实 ...
2016-04-22数据分析的6个操作步骤 一、什么是数据分析? 数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。 二、数据分析过程的6个阶段 1、明确分析目的与框架 基于商业的理解,整理分析框架和分 ...
2016-04-22基于最小二乘法的异常行为分析模型设计 本文针对异常访问现状及问题进行简要描述,在此基础上提出基于一元线性回归的最小二乘法异常访问分析模型,通过该模型解决了异常访问中时间与访问间相关性问题。 异常 ...
2016-04-21机器学习中的随机森林模型 01 树与森林 在构建决策树的时候,可以让树进行完全生长,也可以通过参数控制树的深度或者叶子节点的数量,通常完全生长的树会带来过拟合问题。过拟合一般由数据中的噪声和离群点 ...
2016-04-21数据科学家获取更高薪资的几点建议 每年秋天,我都将在西北分析科学硕士项目当中教授分析领导力课程。我们很骄傲每年的课堂上都会出现非常有天赋的学员。毕业的学员大都会以数据分析师的职位加入到公司或 ...
2016-04-21如何构建落地型的数据分析流程? 数据工作者最长也是有效的一种工作方式是带项目,无论是数据分析还是专项挖掘,项目制能使数据尽量贴近业务并且有效理解业务和数据的各个维度。那么如何建立面向业务落地的数据 ...
2016-04-21简单有效的数据分析才是王道 越来越多的公司开始倡导‘用数据说话’,利用数据分析来帮助公司进行商务运营和制定决策。但如果一个公司试图对所有可能收集到的数据进行分析或者期望用数字来解决一切问题,那便又 ...
2016-04-21基于树的建模-完整教程(R & Python) 基于树的学习算法被认为是最好的方法之一,主要用于监测学习方法。基于树的方法支持具有高精度、高稳定性和易用性解释的预测模型。不同于线性模型,它们映射非线性关 ...
2016-04-21在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14