京公网安备 11010802034615号
经营许可证编号:京B2-20210330
初级数据分析师职业要求
小白:那怎样才能成为一名优秀的数据分析师呢?数据分析师的职业要求又有哪些?
Mr.林:你的问题可以用五懂来回答,即懂业务、懂管理、懂分析、懂工具、还要懂设计。
1. 懂业务
从事数据分析工作的前提就是需要懂业务,即熟悉行业、公司业务及流程,甚至有自己独到见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的实用价值。
例如公司2011年的运营收入是1000万元,那么不熟业务的数据分析师看到的只是1000万这个数字,而熟悉业务的数据分析师,则看到的不仅是1000万这个数字,他还看到数字背后隐藏的信息,如1000万元是有哪几个业务收入构成,哪个业务收入占主要部分,哪个业务收入是最小占比,最高业务收入的地区又是哪个地区等信息。
这就是懂业务与不懂业务的数据分析师之间的区别。
从另外一个角度来说,懂业务也是数据敏感的体现,不懂业务的数据分析师,看到的只是一个数字。反之,懂业务的数据分析师,则看到的不仅仅一个数字,他明白这个数字代表什么意义,知道数字是大了还是小了,懂业务的数据分析师心中有数,这才是真正意义的数据敏感性。
2. 懂管理
懂管理一方面是为了指导数据分析框架的搭建,如刚才介绍的数据分析六步曲的第一步确定分析思路就是需要用到营销、管理等理论知识来指导,如果不熟管理理论,那你如何指导数据分析框架的搭建,以及后续的数据分析开展呢?
另一方面的作用是针对数据分析结论提出有指导意义的分析建议,如果没有管理理论的支撑,如何确保分析建议的有效性呢?
所以这就要求数据分析师需要掌握一定的管理理论知识。
3. 懂分析
懂分析是指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。
基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。
高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
不论简单还是复杂的分析方法,只要能解决问题的方法就是好方法。
4. 懂工具
懂工具是指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
常用的数据分析工具如EXCEL、ACCESS、SPSS、SAS,建议先用好EXCEL分析工具,EXCEL就是一款非常实用的数据处理、分析工具,它能解决、满足你工作中80%,甚至100%。有兴趣、时间、需要的话,再学习SPSS、SAS等统计分析工具。
同样,工具的选择应用以研究问题选择工具,只要能解决问题的工具就是好工具。
5. 懂设计
懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。
图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
小白:颜色搭配都有要求?我不能根据我自己的喜好选择么?
Mr.林:当然有要求,根据喜好选择也要在符合设计原则的基础上选择,例如公司的VI设计是以蓝色为主色调,属冷色系,那么你选的图表颜色就要与公司的VI设计相吻合,尽量避免使用红色、黄色等暖色系的颜色,这方面知识我会在数据展现部分做具体介绍。
小白:好的,看来要成为一个合格的数据分析师还有很长的路要走。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29