最适合实时数据分析的9大应用领域 如今整个商业世界都面临着新的难题,即如何处理来自各客户接触点、交易以及互动对象的大量数据。但与此同时,我们也看到了解决问题的曙光——实时数据流技术,其能够存储大量 ...
2016-04-27机器学习在电商文本挖掘中的应用浅析 电商平台中有海量的非结构化文本数据,如商品描述、用户评论、用户搜索词、用户咨询等。这些文本数据不仅反映了产品特性,也蕴含了用户的需求以及使用反馈。通过深度 ...
2016-04-27数据分析师:为什么说大数据与客户分析之间有所差异 大数据预测与传统的基于抽样的预测不同之处在于,其基于海量历史数据和实时动态数据,发现数据与结果之间的规律,并假设此规律会延续,捕捉到变量之后进行预 ...
2016-04-27数据分析师告诉你:大数据时代如何识别虚假数据 好的决策应该是“数据驱动”的,但是如果数据有效性不好,就不可能据此做出好的决定。我的整个职业生涯几乎都在做市场调研和调查数据分析方面的工作,根据我的经 ...
2016-04-27如何使用队列数据分析来留住你的用户 在数据分析的世界中,队列分析因为看似非常复杂而总是被人忽视。这一次让我们来看一看队列分析究竟能为我们提供什么?以及怎样进行这种分析。 在种种数据分析工具中 ...
2016-04-26你的分析为何让你失望 许多企业投下数百万美元用于大数据、分析法,并雇用数据分析家,但却感到很受挫。无可否认,他们现在得到了更多、更好的数据。他们的分析师和分析法也是一流的。但经理人对业务的想法和争 ...
2016-04-26如何利用数据分析做好NBO 正如其他企业战略一样,企业在最开始应该反映它们想用推荐来实现什么,以及如何最好地实现这些目标。推荐战略设计应该包括诸如这些这样的话题: ● 你想让推荐怎样影响你的客户关系 ...
2016-04-26为建立数据分析优势利用专有数据 人们普遍认为专有信息能为企业提供竞争优势,但如果不在业务过程中进行数据分析和应用,那么专有信息也很难发挥作用。没有哪种组织的资产能像数据这样为人们提供深刻的见解,并 ...
2016-04-26数据分析系列篇:如何写好一个专题的分析报告 如果说你只是盲目的写代码、做开发、做产品,而忽视它本身的商业价值的话,那很多事情都变得没有了意义。前段时间写了几个数据分析系列篇,其实都没有好好列下,究 ...
2016-04-26传统的ROI数据分析 决定对一数据分析项目投资多少并在之后评估投资的成功可能性是个复杂的过程。通常的复杂性是由项目的复杂性、投资和实现收益之间的时间差以确定实际成本和价值的难度决定的。然而,无论如何 ...
2016-04-26一位数据挖掘成功人士给数据挖掘在读研究生的建议 关于数据挖掘方面的研究,我原来也走过一些弯路。其实从数据挖掘的起源可以发现,它并不是一门崭新的科学,而是综合了统计分析、机器学习、人工智能、数据库等 ...
2016-04-25电商在运用数据分析时需要哪些 对于现在的电商来说,数据分析师成为现在电商必不可少的。信息流、物流和资金流三大平台是电子商务的三个最为重要的平台。而电子商务信息系统最核心的能力是大数据能力,包括大数 ...
2016-04-25数据挖掘主要解决的四类问题 数据挖掘非常清晰的界定了它所能解决的几类问题。这是一个高度的归纳,数据挖掘的应用就是把这几类问题演绎的一个过程。下面让我们来看看它所解决的四类问题是如何界定的: ...
2016-04-25如何建立SAS报表 一.使用PRINT过程步 1.PRINT过程步的基本使用 前面我们已经提到过利用PRINT过程步检查我们建立的SAS数据集的内容,实际上就是用PRINT过程步显示SAS数据集的内容。PRINT过程步由 ...
2016-04-25Sas常用函数 一、数学函数 ABS(x) 求x的绝对值。 MAX(x1,x2,…,xn) 求所有自变量中的最大一个。 MIN(x1,x2,…,xn) 求所有自变量中的最小一个。 MOD(x,y) 求x除以y的余数。 SQRT(x) 求x的平方根。 ROUND(x,eps) ...
2016-04-25大数据关键不在技术! 大数据技术的进步之快,与传统的数据分析相比,就好比是喷汽式飞机与独轮车的差距。如果管理者没有足够的判断力和领导素养,该项新技术所带来的风险可能远远大于收益。 仔细研究 ...
2016-04-25数据分析师:数据分析工作常见七种错误及其规避技巧 商业领域的数据科学家和侦探类似:去探索未知的事物。不过,当他们在这个旅程中冒险的时候,他们很容易落入陷阱。所以要明白,这些错误是如何造成的,以及如何避 ...
2016-04-24数据分析师发展前景:大数据应用场景之行业篇 大数据产业发展了几年之后,即将进入到价值变现阶段。传统企业已经对大数据技术和应用有了初步了解,大数据平台和技术的应用也开始普遍。一些公司也成立了大数据部 ...
2016-04-24线性判别分析(Linear Discriminant Analysis, LDA)算法分析 一.LDA算法概述: 线性判别式分析(LinearDiscriminantAnalysis,LDA),也叫做Fisher线性判别(FisherLinearDiscriminant,FLD),是模式识别的经 ...
2016-04-24LDA(Latent Dirichlet Allocation)主题模型算法 LDA整体流程 先定义一些字母的含义: 文档集合D,topic集合T D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词。(LDA里 ...
2016-04-24训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11