
数据分析师:为什么说大数据与客户分析之间有所差异
大数据预测与传统的基于抽样的预测不同之处在于,其基于海量历史数据和实时动态数据,发现数据与结果之间的规律,并假设此规律会延续,捕捉到变量之后进行预测。一个领域本身便有相对稳定的规律,大数据预测才有机会得到应用。
大数据,这个术语已被过度使用,同样也被过度误解。现在我们陷入了这样一个怪圈:每个人都在谈论这件事,每个人都认为别人在做这件事,所以每个人都说他们正在做这件事。
下图的谷歌趋势曲线向我们展示了在过去几年里每个人都在谈论的大数据的搜索量变化情况:
很多人可以就大数据的话题夸夸其谈,但很少有人会意识到大数据对于他们的业务的真正意义。许多人在讨论如何管理大数据,但只有很少的人会仔细考虑如何去使用大数据。也就是说,简而言之,大数据和客户分析之间存在着较大的差距。事实上,在Gartner最近的调查报告中,超过50%的受访企业表示他们不知道如何从大数据中获取价值 。
到目前为止,大部分的讨论都是关于大数据的IT问题的。这些问题的重点是,应该如何对体积巨大的数据进行合理的组织、标记、清理并把它存储起来。就大数据的话题我们可以讨论的内容很多,比如数据存取、数据安全、数据的存储和吞吐量等等…… 这些都是很重要的内容。但如果你是一个公司的老板,这些应该是你最不需要担心的事情。你真正需要担心的是这里边有没有一些东西可以促进你的客户关系管理。对于大多数公司(这里指的是Adobe数字营销的客户)来说,大数据的目的是让你对你的客户可以有更深入的了解。
一个很不好的现象是,当业内的人谈及大数据时,往往都是专注于数据量的大小。数据量的大小是无关紧要的;大规模数据的问题已经基本得到解决。重要的是,企业可以用这些数据来做什么。如果你不使用这些数据来产生驱动营销和业务决策的洞察力,那么即使你使用了非常有效的方式来存储了海量的数据,这对于你的企业也不会有什么促进作用。需要明确的是:能够正常运行数据查询是一回事,而能够为你的企业产生驱动战略规模化的见解则是另一回事。
Adobe是大数据技术的深度用户,管理着数十PB的数据,30分钟内处理的交易比整个信用卡处理网络一天内处理的交易还要多,运行处理大量的数据这并不能算是Adobe的目标,Adobe的真正目标是帮助客户获得所需要的可操作的规模化的见解。
仅有少数真正懂得大数据、能从数以PB计的数据量中获取到见解的分析师是不够的。公司里所有人都应该把客户数据使用起来。比如,营销人员和呼叫中心都应该能够基于前期客户与公司的互动预测客户的需求。 如果那丰富的客户与品牌的互动数据不能在公司中得到充分利用,那么这些数据的意义就不能真正体现出来。
所有的这一切意味着你需要使用收集到的数据更好地了解客户,并不断优化客户体验。这可能意味着你需要为每个客户提供一些不同的东西。这其中的关键是要想清楚如何利用大数据为每个客户量身定制有意义的信息。例如,联想采用客户分析以了解客户在数字属性与呼叫中心之间的访问过程 ,从而为客户提供更贴切的用户体验。这将产生可衡量的有利于促进业务发展的积极影响。
大数据重要不?当然重要。但它不是你的业务是否会取得成功的决定性指标。你对你的客户的认识才是。客户分析可帮助你优化客户体验使它变得更简单更流畅。简单而流畅的客户服务,可以让你赢得客户的心并且他们会成为你品牌的代言人……这才是你的数据的真正的用途。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15