京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于数据挖掘和数据分析
1、很多关于数据挖掘的帖子和文章都在强调工具、算法和架构等,但其实这些都不是数据挖掘的核心,数据挖掘的最重要的环节如下:
数据来源:通过无论是公开的数据还是合作方式、第三方的方式获得数据;
获取标签:对标的物无论是用户、商品、文章分析,以获取足够定义这些标的物的标签,并对标签进行指标化和定义权重,通过这些标签对;
定义特征:通过标的物的个体画像以及标的物间的关系定义个体和整体的特征;
评估模型:通过定义的特征定义并评估一系列数据模型;
应用模型:模型数据可视化、基于有效模型数据价值应用。
2、为什么把数据挖掘和数据分析放在一起说,是因为数据挖掘本身是一个数据应用化的过程,而应用化的过程某种意义上就是一个数据分析的过程,而这个数据分析可以是人为定义的、AI人工智能辅助的等等。
所以,我们可以暂且这样定数据挖掘和数据分析的关系:通过不断优化的数据分析方法,并利用数据挖掘才能够得出数据应用价值的最大化的结果。
数据挖掘是数据价值结果导向的过程集合,而数据应用价值到底有多大?者就是通过数据分析来评估的,其来自于数据分析的过程以及得出的结论。
3、数据挖掘并不局限。就狭义而言,它就是一个在海量数据中挖掘数据价值的过程;而就广义而言,只要是有数据来源的,并能够通过数据分析方法论得到一数据价值结果为导向的过程,都可以称作数据挖掘。
4、产品运营经常会涉及到数据分析,从某种意义上而言,也是一个以数据价值为结果导向的过程:
数据来源:产品运营过程中的产生和收集的一系列数据,如图:
获取标签:通过基本信息和一系列行为数据获取分析得到关键标签,并定义标签的权重和指标,以对基本用户、商品、文章等等标的物进行画像;
定义特征:通过标的物个体的统计数据和画像分析个体间关系的特征和整体性特征,比如电商类用户就可以根据性别和消费能力、消费周期等标签指标,定义其相应的特征;再比如对UV、PV等一系列数据进行整体性的特征判断,以判断产品本身目前的运营特征和情况;等等...
评估模型:通过提取的特征,定义一系列的可用模型,使得从数据来源到标签再到特征以及画像的数据通过模型更直观的展现出来;
应用模型:比如招聘网站按照不同职能区分的用户对于网站的使用情况,产品对于90后用户的运营情况等,以在某种程度上帮助改进产品和提升以及验证运营工作对于目前产品运营的有效性。
5、举个商业化应用的例子,比如EverString这个产品,去年年底刚刚融了B轮65m美刀。这是一家通过大数据技术提供B2B Marketing领域企业智能解决方案的公司,通过挖掘企业数据与结合企业CRM,并建立模型,再利用这些模型帮助企业来预测谁是他们下一个客户。以下是对于这家公司业务的分析:
数据来源:通过爬虫来抓取全网数据并结合企业CRM获取与企业相关的数据,EverString自称有1100万家企业的海量数据库;
获取标签:它们拥有丰富的公司标签,以及合理的指标与权重;
定义特征:与公司业务和规模相关的特征,更加个性化并增加精准性;
评估模型:定义无论是公司层面的营销运营模型,还是基于公司业务本身的数据模型,以关注数据应用价值和更加符合业务应用价值效果的数据模型;
应用模型:将模型应用在整体的业务流程当中,比如通过对历史大量积累的数据进行分析和建模,从而对未来事件的决策的预测。
6、关于数据分析,并不可以简单理解为对于对于数据进行定量、定性的分析和得出一个可用的数据结果的过程集合,这也是我为什么把数据挖掘和数据分析放在一起说的原因。数据分析一定是伴随着数据从采集到定义,再到应用,最后通过分析数据应用的价值,并不断自我过程优化。
从某种意义上而言,数据分析会用到的很多工具。我们会发现无论是用GA、百度统计、友盟等等,它们同样在做着:从采集数据、获取标签(机型、地理位置、用户画像等)、定义特征(转换率、客单价等)和模型(漏斗模型等)到应用模型(可视化图表等)。这个过程同样可以理解为一个数据分析方法结合数据挖掘的过程,即对可获取的数据进行价值挖掘和应用的过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21