
01 树与森林
在构建决策树的时候,可以让树进行完全生长,也可以通过参数控制树的深度或者叶子节点的数量,通常完全生长的树会带来过拟合问题。过拟合一般由数据中的噪声和离群点导致,一种解决过拟合的方法是进行剪枝,去除树的一些杂乱的枝叶。
实际应用中,一般可用随机森林来代替,随机森林在决策树的基础上,会有更好的表现,尤其是防止过拟合。
在机器学习算法中,有一类算法比较特别,叫组合算法(Ensemble),即将多个基算法(Base)组合起来使用。每个基算法单独预测,最后的结论由全部基算法进行投票(用于分类问题)或者求平均(包括加权平均,用于回归问题)。
组合算法中,一类是Bagging(装袋),另一类是Boosting(提升),随机森林便是Bagging中的代表。使用多颗树进行单独预测,最后的结论由这些树预测结果的组合共同来决定,这也是“森林”名字的来源。每个基分类器可以很弱,但最后组合的结果通常能很强,这也类似于:“三个臭皮匠顶个诸葛亮”的思想。
上面文章换一种理解,即为:掌握了随机森林,基本上可以处理很多常见的机器学习问题。由此可见,组合算法在很多时候,其预测的性能都会优于单独的算法,这也正是随机森林的魅力所在。
02 处处随机
多个人组成的团队,是不是一定就强于一个人呢?团队的产出并不能把每个人的力量相加,并非和“众人拾柴火焰高”的道理一样。要让团队的总产出高于单个人的产出,那必须是每个人都有其它人不具备的知识或者能力,如果大家都是完全相同的知识或者能力,在解决难题上并没有帮助。假设对一个数据的预测,大家的结论都是1,最后组合结论依然是1,没有任何改变。对预测准确率,没有任何提升。
这也是“森林”前面还有“随机”这个修饰词的原因,随机就是让每个颗树不一样,如果都一样,组合后的效果不会有任何提升。假设每颗树不一样,单独预测错误率大概都是40%(够弱了吧,很多时候都会犯错),但三颗树组合的后的错误率就变成了35.2%(至少一半以上(两颗树)同时犯错结果才会犯错),其计算方法为:
3个全错(一种情况) + 2个错1个对(3种组合):
1 0.4^3 + 3 0.4^2 * (1-0.4)^1 = 0.352
因此,随机森林算法中,“随机”是其核心灵魂,“森林”只是一种简单的组合方式而已。随机森林在构建每颗树的时候,为了保证各树之间的独立性,通常会采用两到三层的随机性。
从数据抽样开始,每颗树都随机地在原有数据的基础上进行有放回的抽样。假定训练数据有1万条,随机抽取8千条数据,因为是有放回的抽样,可能原数据中有500条被抽了两次,即最后的8千条中有500条是重复的数据。每颗树都进行独立的随机抽样,这样保证了每颗树学习到的数据侧重点不一样,保证了树之间的独立性。
抽取了数据,就可以开始构建决策分支了,在每次决策分支时,也需要加入随机性,假设数据有20个特征(属性),每次只随机取其中的几个来判断决策条件。假设取4个属性,从这4个特征中来决定当前的决策条件,即忽略其它的特征。取特征的个数,通常不能太小,太小了使得单颗树的精度太低,太大了树之间的相关性会加强,独立性会减弱。通常取总特征的平方根,或者log2(特征数)+1,在scikit-learn的实现中,支持sqrt与log2,而spark还支持onethird(1/3)。
在结点进行分裂的时候,除了先随机取固定个特征,然后选择最好的分裂属性这种方式,还有一种方式,就是在最好的几个(依然可以指定sqrt与log2)分裂属性中随机选择一个来进行分裂。scikit-learn中实现了两种随机森林算法,一种是RandomForest,另外一种是ExtraTrees,ExtraTrees就是用这种方式。在某些情况下,会比RandomForest精度略高。
总结起来,使用随机性的三个地方:
因此,理解了这几个地方的随机性,以及随机性是为了保证各个基算法模型之间的相互独立,从而提升组合后的精度。当然,还需要保证每个基分类算法不至于太弱,至少要强于随机猜测,即错误率不能高于0.5。
03 sklearn与mllib
scikit-learn和spark中都实现了随机森林,但各自有些细小的区别。
在scikit-learn中,同样只是简单几行代码即可:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
# sklearn_rf.py
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
df = pd.read_csv('sklearn_data.csv')
train, test = df.query("is_date != -1"), df.query("is_date == -1")
y_train, X_train = train['is_date'], train.drop(['is_date'], axis=1)
X_test = test.drop(['is_date'], axis=1)
model = RandomForestClassifier(n_estimators=50,
criterion='gini',
max_features="sqrt",
min_samples_leaf=1,
n_jobs=4,
)
model.fit(X_train, y_train)
print model.predict(X_test)
print zip(X_train.columns, model.feature_importances_)
|
调用RandomForestClassifier时的参数说明:
从前面的随机森林构建过程来看,随机森林的每颗树之间是独立构建的,而且尽量往独立的方向靠,不依赖其它树的构建,这一特点,在当前的大数据环境下,尤其被人喜爱,因为它能并行,并行,并行……。
能完全并行的算法,一定会被人们追捧,在资源够的情况下,可以同时并行构建大量的决策树。scikit-learn虽然是单机版本,不能做分布式,但也可以利用单机的多枋来并行。
spark中,更是能发挥分布式的特点了:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
from pprint import pprint
from pyspark import SparkContext
from pyspark.mllib.tree import RandomForest
from pyspark.mllib.regression import LabeledPoint
sc = SparkContext()
data = sc.textFile('spark_data.csv').map(lambda x: x.split(',')).map(lambda x: (float(x[0]), int(x[1]), int(x[2]), float(x[3]), int(x[4]), int(x[5])))
train = data.filter(lambda x: x[5]!=-1).map(lambda v: LabeledPoint(v[-1], v[:-1]))
test = data.filter(lambda x: x[5]==-1)#.map(lambda v: LabeledPoint(v[-1], v[:-1]))
model = RandomForest.trainClassifier(train,
numClasses=2,
numTrees=50,
categoricalFeaturesInfo={1:2, 2:2, 4:3},
impurity='gini',
maxDepth=5,
)
print 'The predict is:', model.predict(test).collect()
print 'The Decision tree is:', model.toDebugString()
|
和决策树版本相比,唯一的变化,就是将DecistionTree换成了RandomForest,另外增加了一个指定树颗数的参数:numTrees=50。
而和scikit-learn版本相比,spark中会通过categoricalFeaturesInfo={1:2, 2:2, 4:3}参数指定第5个属性(工作属性)具有3种不同的类别,因此spark在划分的时候,是按类别变量进行处理。而scikit-learn中,依然当成连续的变量处理,所以在条件判断的时候,才会有house
当有多个最优分割的时候,spark与scikit-learn在选择上也有区别,spark会按属性顺序进行选择,而scikit-learn会随机选择一个。这也是导致scikit-learn在多次运行中会输出0和1的问题。
scikit-learn中,还可以输出参数重要性,这也是决策树和随机森林的优点之一(目前pyspark还不支持输入参数重要性):
1
2
|
# scikit-learn中
print zip(X_train.columns, model.feature_importances_)
|
[(‘height’, 0.25), (‘house’,’car’, 0.0), (‘handsome’, 0.60), (‘job’, 0.0)]
04 特点与应用
随机森林基本上继承决策树的全部优点,只需做很少的数据准备,其他算法往往需要数据归一化。决策树能处理连续变量,还能处理离散变量,当然也能处理多分类问题,多分类问题依然还是二叉树。决策树就是if-else语句,区别只是哪些条件写在if,哪些写在else,因此易于理解和解释。
决策树的可解释性强 ,你可以打印出整个树出来,从哪个因素开始决策,一目了然。但随机森林的可解释性就不强了。所谓可解释性,就是当你通过各种调参进行训练,得出一个结论,你老大来问你,这个结论是怎么得出来的?你说是模型自己训练出来的,老大又问了,比如举一条具体的数据,你说一说得出结论的过程呢?因为随机森林引入了随机取特征,而且是由多颗树共同决定,树一旦多了,很难说清楚得出结论的具体过程。虽然可以打印每颗树的结构,但很难分析。
虽然不好解释,但它解决了决策树的过拟合问题,使模型的稳定性增加,对噪声更加鲁棒,从而使得整体预测精度得以提升。
因为随机森林能计算参数的重要性,因此也可用于对数据的降维,只选取少量几维重要的特征来近似表示原数据。同理,在数据有众多的特征时,也可以用于特征选择,选择关键的特征用于算法中。
随机森林还有天生的并行性,可以很好的处理大规模数据,也可以很容易的在分布式环境中使用。
最后,在大数据环境下,随着森林中树的增加,最后生成的模型可能过大,因为每颗树都是完全生长,存储了用于决策的全部数据,导致模型可能达到几G甚至几十G。如果用于在线的预测,光把模型加载到内存就需要很长时间,因此比较适合离线处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18