
SAS系统被誉为国际上的标准软件系统,本文将详细介绍如何在SAS/EM模块中进行关联规则数据挖掘,使用的软件版本是SAS 9.1.3下的Enterprise Miner 4.3:
从SAS顶端的【解决方案(S)】菜单下调出企业数据挖掘(也可以通过在命令行输入miner):
SAS/EM的初始界面如下:
接下来,将数据挖掘外接程序示例数据集中的Associate表导入SAS逻辑库。先将xlsx文件另存为xls文件,再双击SAS资源管理器中的逻辑库,从【文件(F)】菜单下调出【导入数据】对话框:
点击【Next >】,选择xls文件及相应的工作表:
点击【Next >】,选择相应的SAS逻辑库并命名:
点击【Finish】,完成数据导入操作。回到SAS/EM界面,双击Untitled节点并重命名为Analysis。
鼠标左键按住上方工具栏中的【Input Data Source】节点 不放,拖入右边的空白区域之后再放开鼠标,此时SAS/EM界面如下:
双击刚刚拖入的【Input Data Source】节点,选择前面导入的数据集Sasuser.Associate:
切换到【Variables】选项卡,在【Model Role】列【CATEGORY】行处点击右键,选择【Set Model Role】菜单:
分别将【CATEGORY】行设置为target,其他两行设置为rejected:
关闭对话框,询问是否保存变化时,点击【是(Y)】。若关闭SAS后重新打开EM项目时弹出Diagram被锁,则删除emproj文件夹中后缀是.lck的文件即可继续编辑。
鼠标左键按住上方工具栏中的【Association】节点 不放,拖入右边的空白区域之后再放开鼠标。将鼠标移向旁边的【SASUSER.ASSOCIATE】节点周围,当变成十字型时,鼠标左键按住不放,拖向【Association】节点,此时SAS/EM界面如下:
双击右边的【Association】节点 图标,切换到【General】选项卡的界面如下:
默认的分析模式是【By Context】,它根据输入数据源的结点信息选择合适的分析方法。如果输入数据集包括一个id变量和target变量,该结点自动执行关联分析。下面的选项是设置关联最小支持度、项集最大数目和规则最小置信度。
关闭【Association】对话框,右键【Association】节点图标,在弹出的下拉选项中选择【Run】,得到运行结果如下:
此时在【Rules】选项卡上右键单击,会弹出查看图形菜单:
选择【图形(G)】之后,将窗口拉伸到合适的宽度,有些图例需要拉到更宽才会显示出来,结果界面如下:
前面结果表中的19条关联规则都体现在这张图里面,此图的信息量比较大。我们以右下方的圆圈为例来解读它的含义:从纵横坐标轴来看,此圆圈对应表中的第11条关联规则,即{Road Bikes ==> Jerseys};从圆圈标示对应的图例来看,它表示置信度(Confidence)在20.24%到24.13%区间内,从表中可以看出实际值为20.26%;从圆圈的颜色对应的图例来看,它表示支持度(Support)在3.12%到3.78%区间内,从表中可以看出实际值为3.68%;圆圈的大小表示提升度(Lift)的大小,从表中可以看出实际值为1.34。
上面提到的置信度(Confidence)、支持度(Support)、提升度(Lift)是关联发现的三个重要评价指标,它们都是怎么计算出来的呢?我们还是以前面提到的第11条关联规则{Road Bikes ==> Jerseys}为例进行说明:
先简单统计一下数据源中相关数据,总共13050个订单,其中有购买Road Bikes订单的2369个,有购买Jerseys的订单1978个,同时购买了Road Bikes和Jerseys的订单480个,计算以下几个概率:
P(Road Bikes) = 2369/13050 = 18.15%
P(Jerseys) = 1978/13050 = 15.16%
P(Road Bikes & Jerseys) = 480/13050 = 3.68%
置信度Confidence(Road Bikes ==> Jerseys)表示在客户购买Road Bikes的条件下,同时又购买Jerseys的概率,即P(Jerseys|Road Bikes) = P(Road Bikes & Jerseys)/P(Road Bikes) = 3.68%/18.15% = 20.26%。置信度越高,说明相关联的商品被交叉销售的机会越大。
支持度Support(Road Bikes ==> Jerseys)表示客户同时购买过Road Bikes和Jerseys的概率,即P(Road Bikes & Jerseys) = 3.68%。支持度越高,说明相关联的商品被同时购买的越频繁。
提升度Lift(Road Bikes ==> Jerseys)表示使用关联规则可以提升的倍数,是置信度与期望置信度的比值,公式为Confidence(Road Bikes ==> Jerseys)/P(Jerseys) = 20.26%/15.16% = 1.34。
在进行关联规则的数据挖掘中,通过指定这三个标准的最小值,三个标准的值都大于临界值的关联规则就被列出。而且以上这三个标准缺一不可,孤立地使用这三个标准中的任意一个,都可能导致错误结果。
当某种常见现象出现在关联规则右边时,高置信度也会产生误导。比如以下几条规则的置信度都比较高,但几乎是没有作用的规则:“买方便面则买牛奶”、“买牙刷则买牛奶”、“喜欢野外休闲则会买牛奶”等等。这一类规则的置信度和支持度都会比较高,因为很少有人会不买牛奶。但这一类规则没有任何作用。
在关联规则结果界面是查看表的情况下,还可以在查看菜单下选择【生成表子集(S)...】,通过设定筛选出想要的关联规则出来,例如下图是在【Confidence】选项卡中设定最小置信度为26:
点击【Process】后,结果将筛选出8条关联规则。
在置信度(Confidence)、支持度(Support)、提升度(Lift)这三个重要评价指标之中,提升度是最有可能单独使用而不致产生误导的标准,因为它可以测量关联规则增进预测右边现象的能力。但如果该规则的支持度很低,该规则也可能造成误导。
除了以上三个对关联规则的数量标准外,一条关联规则真正可取,还需要具备以下两个条件:一是该规则必须是人们常识之外、意料之外的关联,二是该规则必须具有潜在的作用,而目前任何技术与算法都无法判断哪些知识属于常识,也无法判断哪些属于可能具有潜在作用的规则,因此关联规则的挖掘离不开人的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15