如何有效的成为一名数据科学家 人们总是问我如何有效的成为一名数据科学家。我的经历是先成为一名软件工程师,然后读了数据科学相关的PhD (是在它变成热点之前)。在这篇文章里,基于我在这个领域的经验总结, ...
2016-04-08
摘要:决策树主要用来描述将数据划分为不同组的规则。第一条规则首先将整个数据集划分为不同大小的子集,然后将另外的规则应用在子数据集中,数据集不同相应的规则也不同,这样就形成第二层数据集的划分。一般来说 ...
2016-04-07
大数据挖掘技术之DM经典模型(下) 接着上篇大数据挖掘技术之DM经典模型(上)文章,接下来我们将探讨朴素贝叶斯模型、线性回归、多元回归、逻辑回归分析等模型。 4、朴素贝叶斯模型 表查询模型简单有效 ...
2016-04-07大数据挖掘技术之DM经典模型(上) 实际上,所有的数据挖掘技术都是以概率论和统计学为基础的。 下面我们将探讨如何用模型来表示简单的、描述性的统计数据。如果我们可以描述所要找的事物,那么想要找到它就 ...
2016-04-07
R语言企业级数据挖掘应用 在互联网企业,在分析端使用闭源的商用软件几乎是不可能的,原因很简单:成本太高,不管是使用,还是研发及维护。 但我个人觉得这可能还不是最主要的原因,对于互联网企业来说,数据虽 ...
2016-04-07
数据挖掘基础:分词入门 谷歌4亿英镑收购人工智能公司DeepMind,百度目前正推进“百度大脑”项目,腾讯、阿里等各大巨头布局深度学习。随着社会化数据大量产生,硬 件速度上升、成本降低,大数据技术的落地实 ...
2016-04-07
大数据分析中的八大趋势 Remarketer的首席数据科学家Dean Abbott直接奔向了云计算。大数据和分析的领先优势,其中包括用来存储原生格式的大量数据的数据湖泊,当然,云计算技术也在快速前进。虽然技术选项还远 ...
2016-04-07
五个未来最吃香的IT技能 数据分析排第一 在2020年,专业技术知识将不再是IT部门的唯一领域了。整个公司/组织的员工应当要理解如何把IT技术运用到他们的工作之中。但未来学家和IT专家说,最吃香的IT相关技术包 ...
2016-04-07
摘要:如果你从来没有编程经验,也没有比较熟悉的统计软件,那么学习R可能会比较困难。这个学习路径主要针对新手。关于R有很多优秀资源,这里介绍的一些在线课程、书籍和更多让你尽快学会R。 步骤1:你为什么要学 ...
2016-04-06
数据分析师常见的10个问题 1、如何做好数据分析? 分析师成长是通过“干”、\"思\"、“熬”出来的。干:多做。哪些是临时需求。你要做各种各样的分析;思:你在边干的过程中,要边思考,边总结,只有这 ...
2016-04-06让数据决策你的行为—拉勾网数据分析 我们每天都在产生数据,出行,社交,购物,吃饭 等等,每一个行为伴随着数据的产生,如果将这些数据收集起来,并加以处理分析便可以反过来影响你的行为。 举个最 ...
2016-04-06
我们在数据挖掘中迷失了什么? 当我们沉浸在亲手构建的模型里的时候,是否会理智地跳出来,重新审视一下,我们所忽略的会不会正是客户所需求的呢? 1.太关注训练 就像体育训练中越来越注重实战训练, ...
2016-04-06
你用Python做过什么有趣的数据挖掘项目? 大概一年多以前,和几个小伙伴均认同一个趋势:觉得通过技术手段获取网上越来越丰富的数据,并基于这些数据做分析及可视化,必能产生有价值的结果,帮助大家改善生活 ...
2016-04-06数据时代的反爬虫绝技 网络爬虫已经成了很普及的网络技术,会代码的可以自己捣鼓一个高级的“人工智能”爬虫,不会的也可以从网上下载一个开源的,然后找个机器或一些代理服务器,就可以肆无忌惮的薅羊毛了。轻 ...
2016-04-06
App数据分析之旅,如何收集数据? 为什么要针对App收集数据,想必大家能够举出很多理由。大家可以想一下,尽量不要设计到数据后期的分析,不要涉及产品优化,不要设计用户体验,更不要设计运营优化,等等。因 ...
2016-04-06
“当你在深夜遇到系统挂了和数据损坏,有什么办法可以避免那些痛苦和头痛?” 这是DJ·Patil在最近的CTO峰会提到的。他是RelateIQ前任产品副总裁,和美国现任首席数据科学家,Patil总结所有产生变革的经验教训和失 ...
2016-04-05
如何面对PB级别数据的架构变迁? 面对PB级别数据存储,我们一路走来也踩过很多坑,这里就直接进入主题了,给大家分享一下监控宝系统架构变迁的两个比较重要的点。 一、Redis的扩展 我们面临的第一个的问题 ...
2016-04-05
基于你的点赞轨迹,数据挖掘可以探知你的性格秘密 整理了一些社交媒体数据挖掘的结果,你会发现,大数据、行为痕迹和社交媒体的结合,展现了无限的机会和可能。例如,基于脸书的挖掘,可以探知你的智商、神经质 ...
2016-04-05
懂你的推荐算法,推荐逻辑是怎样的? 作为一个喜欢思考人生的美男子,我时常感慨,现在这个年代,人们上网获取信息的成本真的好低。智能手机,人手一台,打开3G就能上网,百度一搜,什 么都有。当然百度上搜出 ...
2016-04-05
非一般的数据挖掘机:关联规则法 机器学习中的许多数据挖掘方法主要是针对数值型数据的,算法也很偏向数理方法(例如支持向量机)。而分类数据(非数值型数据),其本质不过是简单的计数,针对这类数据的一个简 ...
2016-04-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26