京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师常见的10个问题
1、如何做好分析?
分析师成长是通过“干”、"思"、“熬”出来的。干:多做。哪些是临时需求。你要做各种各样的分析;思:你在边干的过程中,要边思考,边总结,只有这种你才能沉淀。熬:通过时间的积累,你的商业意识、数据分析思维、技能得到提升,广积粮,缓称王,实现厚积而薄发。
2、如何做好数据挖掘?
数据挖掘和数据分析在我认为,都是实现数据价值的“工具”、“方式”。数据挖掘相对于数据分析来说,入门门槛会更高一些,对于数据挖掘方法,挖掘工具要求更高。但做好数据挖掘,参考数据分析。
3、需要看什么类型的书?
很从刚做分析师的朋友,但喜欢问:我想做好分析师要看什么样的书?这个背后的逻辑是不是说你看了别人推荐给你的书,你就可以成为很厉害的分析师。
我的观点是:书是一定要看,而且有机会的时候多看看书。但一定要明白看书你对的价值体现在哪?
但数据分析更多是干,实践中成长的。
4、做好数据分析需求什么样的技能?
我想做数据分析,一定要会SAS、SPSS、R吗?如果你不去做模型。
基本的统计知识肯定要掌握的,但分析师目前主要还是以SQL+EXCEL+PPT来完成一份分析报告。
5、什么专业才能做数据分析?
现 在招聘数据分析大多数都是要求:计算机、统计学相关专业。但是我相信未来数据分析招聘的专业会越来越宽,而且很多管理类(营销、管理学、情报学等)专业毕 业的人会是比较受欢迎的。因为当大家对数据分析理解越来越深的时候,会发现数据分析核心的能力还是在:分析数据,然后与商业结合。
6、数据分析的价值?
基于历史数据,来告诉相关人的业务情况是怎么样的,结合对于公司业务模式的理解,一起制定相关策略,帮忙公司实现业务目标。
基于公司内、外部的数据,结合分析师对于公司业务的理解、行业发展趋势的理解,提出公司及行业发展趋势,为公司制定相应的战略提供参考。
如果从精典的数据价值金字塔来说,如果你仅提供数据,你不是数据分析,那在做最最传统的BI的工作,给出数据。如果你给出了信息,恭喜你已经开始在做数据分析了,如果给出"知识"(在我认为,就是给你的观点,建议,方案,而且是基于数据得到的),欢迎你进入到数据分析师的世界。如果你能数据产品(对于什么是数据产品,我们后续再讨论)把知识深沉下来,bingo,你是一名出色的数据分析师。
7、数据分析,到底是分析什么数据?
分析公司内、外部的数据,内部的数据有以下几类(以为例):
1、流量数据或者说网站的点击流(日志)数据。
2、订单数据。
3、商品数据。
4、会员数据。
5、供应链相关数据。
6、客服数据。
不同公司对于数据收集的粒度、完整性不一样。是否所有公司都要把所有的数据都收集下来,我的观点是:如果允许,当然越多越好。但是很多是时候是要分析师对评估哪些数据需求收集,保存多久的数据。分析师一定要用一定ROI的意识。
那种数据都没有积累多少,就号称自己是公司,号称通过大数据建议竞争优势,你觉得可能吗?
8、数据分析有几种角色?
数据分析:助理分析师、分析师、资深数据分析/数据分析专家、商业分析师;
数据:我特别喜欢这种角度,我觉得的真正的数据分析师,应该有产品的思维逻辑。因为不管你在做报表,报告,系统,那怕是一个简单的数据需求,你都可以理解为一种数据产品。(什么是产品,产品是解决目标的问题。请分析师都牢记这一点。)
9、什么样的人适合做数据分析?
除了之前我的一些文章讨论到的需要相关的基本的技能外,也许下面的内容对一个数据分析师成长更为重要:
1、看到数据有兴奋感的人。有兴奋感说明你有兴趣,那说明很会有意愿把数据分析好。
2、愿意学习的人。你分析的内容永远不会一尘不变,即使你分析的主题是相对固定,但业务是变化的,你需要不断的学习业务,同不同人沟通,吸收别人的观点。所以分析师一定要报着学习的态度。
3、逻辑思维较强的人。数据分析师想要把你的分析好,一定要有结论思维。
4、表达与沟通。因为数据分析最终价值的实现,一般来说不会是分析师亲自去制定或者实施。所以你一定很有条理、逻辑清晰向别人表达,让业务方认识到你分析结果的价值,从而影响业务方去愿意使用你从数据中得到的观点。
10、数据分析的职位发展怎么样?
一个很厉害的分析师应该怎么样?
临时需求—业务监控—专题分析—驱动业务
我把一个分析师经历以下几个阶段:
1、业务方说什么按其需求给什么。偶尔对你的数据还会有怀疑。
2、业务方说什么给什么,在对需求背景,目标理解的基础,会增加一些相关数据。业务方认可。
3、业务方意识到分析师的价值,主动找你沟通。沟通后,为业务方设计相应指标,开发相应的报表监控业务进展,通过数据可以及时定位问题。
4、开始写分析报告。围绕一个主题进行分析,给出分析报告,与业务方一起沟通去让你的分析结果落地。
5、你走到业务方前面,针对其业务进行主动分析,影响业务方,让业务方围绕你的分析结论来开展,有一定的数据驱动业务味道。
多久才能成长为一名资深数据分析师?
每个公司或者个人对于资深数据分析师的理解可能不一样。
我的理解是:基于对于数据底层、思考逻辑、商业意识培养,一个分析师的成长应该要在3年左右。
请用一句话概况数据分析师:他通过看数据,告诉你知道与不知道的信息,并告诉你如何用这些信息提升你的KPI。
如果你相信他,可以按他说的做。如果你不相信他,就是呵呵一下。
好的数据分析师,怎么能不拿高工资呢?对吧,通过上面的讨论,你看一个数据分析师,又要懂商业,又要懂业务,又森有产品思维,又要懂项目管理。更不要说做为数据分析师本身需要的一些专业知识,对工具的掌握。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27