京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在互联网企业,在分析端使用闭源的商用软件几乎是不可能的,原因很简单:成本太高,不管是使用,还是研发及维护。 但我个人觉得这可能还不是最主要的原因,对于互联网企业来说,数据虽然获取更容易,但环境更为复杂。开源软件可以根据业务的变化 进行调整,但商业的闭源软件则很难做到。
好多人问过我这个问题,我会说你有多大内存就能处理多大数据,这话显然不负责任。这个问题确实不太好回答,因为每个人心中的大数据是不一样的。 比如有人觉得几百万就是大数据,有些人觉得没个几亿就不算大数据,甚至有人说你处理不了的就是大数据(擦!?)。这些还只是从记录 数(数据存储)的角度来看的,我们换个角度想想:建模工程师要做的事情无非是将用户和产品进行合理匹配,那最细粒度就是用户维(或产品维)。 试问你有超过千万的用户数据分析建模么?对于一般的分析(工程)师来说,常见的情况还是几十万甚或百万级别。这个量级对于R来说就很容易了, 比如我刚刚的工作就是在自己的PC上载入了一个50000000×3的数据框。
接着我们在说说速度,曾经有太多的人抱怨R的运行速度太慢,甚至堂而皇之的公开表明观点。但我发现大部分人是因为不熟悉R语言的编程, 而是直接套用C或Java的编程方式,因而导致无法快速得到结果。举两个例子:
有次在微博上一位朋友抱怨说R做了一个几千乘几千的相关矩阵花了他1天时间,我当时就愕然了,然后默默地给了一个几秒钟搞定的脚本。
还有一次更具有代表性:我的项目组有个R的项目需要上线,于是直接把原始代码交予了一位项目成员,嘱咐他稍作改动即可上线。 但他发现需要3个小时才能将线上的数据计算完毕,于是又找到我帮忙优化。我看了一下,果不其然,Java风格的R代码,向量化编程的思想 一点都没有用。改之,3分钟结束计算。
R语言的向量化运算几乎可以和底层语言的速度一较高下,并且向量化是天然的并行化方式,如果条件允许,R的向量化编程可以很方便的转化为并行框架, 这也就是为什么说R + Hadoop是大数据的发展方向的理由之一。
再说个例子:试问100万行,20万列的数据是大数据么(你没看错,是200000维)?恩,R能够处理,而且可以在这类数据上构建模型。
对于管理者来说,合适的人出现合适的岗位是衡量管理者是否合格的重要标准之一。对于数据分析人员,合适的工具匹配合适的数据则是是否胜任工作的 基本素质之一。R并不是通吃所有的数据场景,它只是在出现在该出现的分析建模环节。
R的位置在哪里?先让我们看看所谓的大数据是如何从企业中传递的:
从最底层的原始数据来看,PB级数据确实不是R所擅长,但这些数据有Hadoop或者其他高性能存储和处理系统;
向上是针对于不同业务场景的数据集市,经过清洗后,数据的规模则下降到了TB级;
再向上则是针对于特定任务的分析和挖掘模块,数据已经被整理到了GB级,这时候R的处理则是非常方便
R分析的结果则是MB级的输出,比如图表、得分,或者是规则。比如规则很容易在数据集市这段做并行化计算
我的团队在大量使用R作为分析建模工具,看似比较另类,但其实Google、Facebook、Linkedin等公司已经有大量的直接使用R做分析挖掘的应用, 只是大家不太留意罢了。
一句话总结:R并不是在象牙塔里供科研人员玩耍的玩具,而是实实在在工业界使用的便捷环境。
当然,这里还有很多问题没有展开,比如:
R语言的数据挖掘应该在并行化环境完成还是在单台机器的计算环境完成?
生产中直接实施R环境是否可行?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15