京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在互联网企业,在分析端使用闭源的商用软件几乎是不可能的,原因很简单:成本太高,不管是使用,还是研发及维护。 但我个人觉得这可能还不是最主要的原因,对于互联网企业来说,数据虽然获取更容易,但环境更为复杂。开源软件可以根据业务的变化 进行调整,但商业的闭源软件则很难做到。
好多人问过我这个问题,我会说你有多大内存就能处理多大数据,这话显然不负责任。这个问题确实不太好回答,因为每个人心中的大数据是不一样的。 比如有人觉得几百万就是大数据,有些人觉得没个几亿就不算大数据,甚至有人说你处理不了的就是大数据(擦!?)。这些还只是从记录 数(数据存储)的角度来看的,我们换个角度想想:建模工程师要做的事情无非是将用户和产品进行合理匹配,那最细粒度就是用户维(或产品维)。 试问你有超过千万的用户数据分析建模么?对于一般的分析(工程)师来说,常见的情况还是几十万甚或百万级别。这个量级对于R来说就很容易了, 比如我刚刚的工作就是在自己的PC上载入了一个50000000×3的数据框。
接着我们在说说速度,曾经有太多的人抱怨R的运行速度太慢,甚至堂而皇之的公开表明观点。但我发现大部分人是因为不熟悉R语言的编程, 而是直接套用C或Java的编程方式,因而导致无法快速得到结果。举两个例子:
有次在微博上一位朋友抱怨说R做了一个几千乘几千的相关矩阵花了他1天时间,我当时就愕然了,然后默默地给了一个几秒钟搞定的脚本。
还有一次更具有代表性:我的项目组有个R的项目需要上线,于是直接把原始代码交予了一位项目成员,嘱咐他稍作改动即可上线。 但他发现需要3个小时才能将线上的数据计算完毕,于是又找到我帮忙优化。我看了一下,果不其然,Java风格的R代码,向量化编程的思想 一点都没有用。改之,3分钟结束计算。
R语言的向量化运算几乎可以和底层语言的速度一较高下,并且向量化是天然的并行化方式,如果条件允许,R的向量化编程可以很方便的转化为并行框架, 这也就是为什么说R + Hadoop是大数据的发展方向的理由之一。
再说个例子:试问100万行,20万列的数据是大数据么(你没看错,是200000维)?恩,R能够处理,而且可以在这类数据上构建模型。
对于管理者来说,合适的人出现合适的岗位是衡量管理者是否合格的重要标准之一。对于数据分析人员,合适的工具匹配合适的数据则是是否胜任工作的 基本素质之一。R并不是通吃所有的数据场景,它只是在出现在该出现的分析建模环节。
R的位置在哪里?先让我们看看所谓的大数据是如何从企业中传递的:
从最底层的原始数据来看,PB级数据确实不是R所擅长,但这些数据有Hadoop或者其他高性能存储和处理系统;
向上是针对于不同业务场景的数据集市,经过清洗后,数据的规模则下降到了TB级;
再向上则是针对于特定任务的分析和挖掘模块,数据已经被整理到了GB级,这时候R的处理则是非常方便
R分析的结果则是MB级的输出,比如图表、得分,或者是规则。比如规则很容易在数据集市这段做并行化计算
我的团队在大量使用R作为分析建模工具,看似比较另类,但其实Google、Facebook、Linkedin等公司已经有大量的直接使用R做分析挖掘的应用, 只是大家不太留意罢了。
一句话总结:R并不是在象牙塔里供科研人员玩耍的玩具,而是实实在在工业界使用的便捷环境。
当然,这里还有很多问题没有展开,比如:
R语言的数据挖掘应该在并行化环境完成还是在单台机器的计算环境完成?
生产中直接实施R环境是否可行?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30