数据分析-回归分析 回归分析是数据分析中最常用的模型之一,其实用性和普遍性很高,如下分别从线性回归、多元回归、逻辑回归三方面,通过实例分析讲解 解决三个问题 实例1:羽美想预测明天的冰茶销量 ...
2016-03-29浅谈数据分析的误解 误解1:数据分析并不是IT,也不是报告。对这一点的误解,是我见到过的最常见的误解之一。 当谈到数据分析时,很多人仍然相信这应该是IT的事情,因为它与技术有关。数据分析的第一步是把 ...
2016-03-29
按流程进行数据分析 数据分析不是简单的“分析数据”,它是一种解决问题的方法,一个解决问题的过程,甚至可以认为是一种方法观。作为一名数据分析工作者,这里所说的数据分析是一个相对狭义的概念,如果没有 ...
2016-03-29
关于分布式数据库,你该了解的几件事 随着业务对大数据技术需求的不断演变,分布式数据库在整个生态圈中的地位愈加重要,已可预见必将成为未来大数据技术发展的又一个核心,而其中OLAP(联机分析处理)显得尤其重 ...
2016-03-29
如何使用队列数据进行APP用户行为分析 在数据分析的世界,队列经常被撇到一边,这似乎是因为其复杂的特性。那么学习这些分析能够获得什么帮助,以及是如何做到的。 在数据分析的世界,有一个工具经常被闲置 ...
2016-03-29建立数据场的七大技能 成为数据极客,建立自己的数据场需要哪些技能呢?遇到普通的数据,通过SQL做分析。如果数据量比较大,可以使用Hadoop等大数据框架处理。在深入挖掘上,可用Python或者R语言进行编程。 0 ...
2016-03-29
如何研究学习一个机器学习算法? 机器学习算法的运行实验,会使你对于不同类型问题得出的实验结论,并对实验结论与算法参数两者的因果关系有一个直观认识。 在这篇文章中,你将会知道怎么研究学习一个机器学 ...
2016-03-28用SAS进行数据分析:报表与图形输出过程汇总 如何用SAS进行数据分析:下面我们就对报表与图形输出过程汇总 *Tabulate过程分类汇总; proc tabulate data=need; class brand; ...
2016-03-28
用SAS进行数据分析:使用Array填补缺失值 在做数据分析、数据建模之前,数据处理过程中都会碰到的一个问题,就是对缺失值的处理,有时候我们不可能都把缺失值给丢掉,可能通过填补的方式尽可能的补充基础数据, ...
2016-03-28大数据公司挖掘数据价值的49个典型案例(二) 下篇 数据关联、数据废气和黑暗数据 大数据主要不作因果判断,主要适用于关联分析。很多关联分析并不需要复杂的模型,只需要具有大数据的意识。 ...
2016-03-28大数据公司挖掘数据价值的49个典型案例(一) 对于企业来说,100条理论确实不如一个成功的标杆有实践意义,本文的主旨就是寻找“正在做”大数据的49个样本。 本文力图从企业运营和管理的角度,梳理出发掘大数 ...
2016-03-28
大数据技术与应用案例详解:获取有价值信息 大数据技术与应用是人们值得关注的事情,因为它很有可能对你的生活带来友好的改变。 大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已 ...
2016-03-28
引言:数据分析师的角色犹如一位大厨,原料有问题,大厨肯定烹饪不出色香味俱佳的大菜,数据有问题,数据分析师得出的结论自然也就不可靠。 如果一位大厨,刚刚眉飞色舞地给客人描绘了如何搭配一道色香味俱佳的大 ...
2016-03-27
如何选择一个合适的数据图表? 在传递信息时,有数据比没数据更有说服力,而一旦有了数据,那就牵涉到如何呈现。PowerPoint为我们提供了诸多图表,它们在一定程度上已经可以满足我们平时需求。当然,若能够有更 ...
2016-03-27
大数据之 “用户行为分析” 最典型的当属全球电子商务的创始者亚马逊(Amazon.com)了,从 1995年 首创网上售书开始,亚马逊以迅雷不及掩耳之势,彻底颠覆了从图书行业开始的很多行业的市场规则及竞争关系,10 ...
2016-03-27
写给喜欢数据分析的初学者 在耀眼的职业光环下,数据分析师自身的成长,几乎是与孤寂相伴,在高级打杂中,锻造而成。 最近接到一个职业访谈的邀请,要给对数据分析感兴趣的新人Y(目前在知名电商从事系统开 ...
2016-03-27
协同过滤推荐算法的原理及实现 协同过滤推荐算法是诞生最早,并且较为著名的推荐算法。主要的功能是预测和推荐。算法通过对用户历史行为数据的挖掘发现用户的偏好,基于不同的偏好对用户进行群组划分并推荐品味 ...
2016-03-27数据行业及新三板典型大数据公司分析 大数据行业未来将持续高速增长。我国大数据产业市场规模2014-2020 年的年化增长率高达48.51%,未来将持续高速增长。政府对大数据行业未来发展高度重视,一系列政策相继出 ...
2016-03-27
R语言与机器学习(分类算法)支持向量机 说到支持向量机,必须要提到july大神的《支持向量机通俗导论》,个人感觉再怎么写也不可能写得比他更好的了。这也正如青莲居士见到崔颢的黄鹤楼后也只能叹“此处有景道 ...
2016-03-26
数据分析师的原则 面对一大堆看似杂乱的数据,如何进行信息提取与数据加工,从中获取自己想要的信息,并应用这些信息,有理有据的进行需求的讨论、最终设计决策的推进,这是每一个交互设计师必修的课程。 ...
2016-03-26在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20