京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用队列数据进行APP用户行为分析
在数据分析的世界,队列经常被撇到一边,这似乎是因为其复杂的特性。那么学习这些分析能够获得什么帮助,以及是如何做到的。
在数据分析的世界,有一个工具经常被闲置。虽然是一个非常强大的分析工具,队列却经常因为其复杂的特性而被放在一边。随着数据分析的过程中它能给与很多帮助,人们的看法发生改变,现在让我们更加深入的认识队列。
先解释什么是队列开始。队列能够帮助你分析一组人群在特定时间里共有的普遍特性,包括其操作或者行为。队列允许你从更多的“微”镜头看到数据,并提供你一些关于整体分析拼图中具体某一块的细节。
举例:每一个开发者或者分析学者首先想知道的关于他们的App的数据是留存率。你能让多少人下载你的App,更能让多少人保留你的App。留存率是关键指标,因为“用户留存是真实的增长而不仅仅是用户获取”。在这样的情况下,那些已经安装了你的App的用户,接下来的5天就是观察他们是否与App有互动,作为留存率的测试。
下面的信息以表格的形式显示:
注:cohort-队列 ,people-人,day-天,3-JAN-2016:2016/01/03(以此类推),average-平均值

在上面的表中,有558个用户在2016年1月3号下载了这个App,第1天(DAY1)有30%用户登录使用了这个App,第二天是23%,第三天是24%,第四天是21%,第五天是25%。根据数据的显示,很难读出数据背后的含义,和作出快速的参考。作为分析人员,你想了解过去5天的(从下载后第1天开始)的留存趋势,以及固定时期内的趋势,那么说下下载后的第一天和第三天。
此外,你想测试留存的总数和(阶段)获得的用户。对于少数队列来说,合计是很有用的,一方面留存率可能很低,但是获得的用户人数很高,却不是理想的用户。我们对第一天,第三天和第五天的留存人数很感兴趣。下面队列数据在循环点里进行了可视化的总结:
上面的图表显示了日常队列随着选择的天数变化的趋势。如:从开始到第1天,第3天,第5天的三个队列。
柱状图中浅色和深色的阴影部分分别表示客户的留存数量和留存率。粉色条形图显示了第一天结束后的日常队列,绿色条形图显示了第一天到第三天的日常队列,紫色条形图显示了从第三天到第五天的日常队列。第一天1月3号,从粉色图表可以看出,获得的用户总数是558,而留存的用户是167。对于相同的队列,在第三天,下载总数不变,随着从第一天开始,留存的用户数量仅仅是167。在这167个人中,只有135个人留存下来。一个下降趋势开始出现。
三个图表的顶部的趋势分析各自显示了从第一天,第三天,第五天开始的日常队列的留存率。三种颜色的彩条显示了围绕着线所代表的置信区间,而围绕平滑线的彩条是关于留存率的。
获得的洞察力:
1、留存率明显向下的趋势已经出现。自安装App的三天后,留存率出现锐减。这需要进一步的调查,因为下降就是从第三天开始的。
2、1月3号获得用户有着最高的留存率,但是从第三天到第五天开始,留存率开始无预警的下降,跟其他日常队列不一样。应该深入挖掘1月3号当天获得的用户有哪些特性。另外,当天的用户人数相比其他时候的下载人数也是最高的。
3、1月4号获得的用户相比1月3号,留存率较低。到了第五天,它相比第一天和第三天,留存率低于置信区间较低的条形。
4、数据同样显示了在1月17号用户获得数量出现了高峰。通过队列的使用,我们可以学习整体趋势,特定时间段的趋势,极限值,以及当结合其他信息如市场营销策略和在测试期间实现的用户获得策略,我们可以将这些合理的结论记下来,用来进一步增强用户获得的策略和留存策略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01