京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何使用队列数据进行APP用户行为分析
在数据分析的世界,队列经常被撇到一边,这似乎是因为其复杂的特性。那么学习这些分析能够获得什么帮助,以及是如何做到的。
在数据分析的世界,有一个工具经常被闲置。虽然是一个非常强大的分析工具,队列却经常因为其复杂的特性而被放在一边。随着数据分析的过程中它能给与很多帮助,人们的看法发生改变,现在让我们更加深入的认识队列。
先解释什么是队列开始。队列能够帮助你分析一组人群在特定时间里共有的普遍特性,包括其操作或者行为。队列允许你从更多的“微”镜头看到数据,并提供你一些关于整体分析拼图中具体某一块的细节。
举例:每一个开发者或者分析学者首先想知道的关于他们的App的数据是留存率。你能让多少人下载你的App,更能让多少人保留你的App。留存率是关键指标,因为“用户留存是真实的增长而不仅仅是用户获取”。在这样的情况下,那些已经安装了你的App的用户,接下来的5天就是观察他们是否与App有互动,作为留存率的测试。
下面的信息以表格的形式显示:
注:cohort-队列 ,people-人,day-天,3-JAN-2016:2016/01/03(以此类推),average-平均值

在上面的表中,有558个用户在2016年1月3号下载了这个App,第1天(DAY1)有30%用户登录使用了这个App,第二天是23%,第三天是24%,第四天是21%,第五天是25%。根据数据的显示,很难读出数据背后的含义,和作出快速的参考。作为分析人员,你想了解过去5天的(从下载后第1天开始)的留存趋势,以及固定时期内的趋势,那么说下下载后的第一天和第三天。
此外,你想测试留存的总数和(阶段)获得的用户。对于少数队列来说,合计是很有用的,一方面留存率可能很低,但是获得的用户人数很高,却不是理想的用户。我们对第一天,第三天和第五天的留存人数很感兴趣。下面队列数据在循环点里进行了可视化的总结:
上面的图表显示了日常队列随着选择的天数变化的趋势。如:从开始到第1天,第3天,第5天的三个队列。
柱状图中浅色和深色的阴影部分分别表示客户的留存数量和留存率。粉色条形图显示了第一天结束后的日常队列,绿色条形图显示了第一天到第三天的日常队列,紫色条形图显示了从第三天到第五天的日常队列。第一天1月3号,从粉色图表可以看出,获得的用户总数是558,而留存的用户是167。对于相同的队列,在第三天,下载总数不变,随着从第一天开始,留存的用户数量仅仅是167。在这167个人中,只有135个人留存下来。一个下降趋势开始出现。
三个图表的顶部的趋势分析各自显示了从第一天,第三天,第五天开始的日常队列的留存率。三种颜色的彩条显示了围绕着线所代表的置信区间,而围绕平滑线的彩条是关于留存率的。
获得的洞察力:
1、留存率明显向下的趋势已经出现。自安装App的三天后,留存率出现锐减。这需要进一步的调查,因为下降就是从第三天开始的。
2、1月3号获得用户有着最高的留存率,但是从第三天到第五天开始,留存率开始无预警的下降,跟其他日常队列不一样。应该深入挖掘1月3号当天获得的用户有哪些特性。另外,当天的用户人数相比其他时候的下载人数也是最高的。
3、1月4号获得的用户相比1月3号,留存率较低。到了第五天,它相比第一天和第三天,留存率低于置信区间较低的条形。
4、数据同样显示了在1月17号用户获得数量出现了高峰。通过队列的使用,我们可以学习整体趋势,特定时间段的趋势,极限值,以及当结合其他信息如市场营销策略和在测试期间实现的用户获得策略,我们可以将这些合理的结论记下来,用来进一步增强用户获得的策略和留存策略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29