京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析-回归分析
回归分析是数据分析中最常用的模型之一,其实用性和普遍性很高,如下分别从线性回归、多元回归、逻辑回归三方面,通过实例分析讲解
解决三个问题
实例1:羽美想预测明天的冰茶销量
实例2:宫野想估算在一个新的地址开店的月销售额
实例3:羽美想推测一下明天的特供蛋糕卖出去的可能性
回归分析的基础流程分六步
羽美想预测明天的冰茶销量。羽美知道冰茶在天热的时候销量好。记录的店中冰茶的销售数据在下表,先画出散点图观察相关性,下图是明显的正相关
可以通过添加趋势线,勾选显示公式和R平方值,轻松就搞定回归方程和精度估计
也可以自己用公式来计算,先求x的平均,y的平均,Sxx,Syy,Syy,通用Se的对a,b的微分=0可以推导出a,b的计算公式
用公式计算R平方看看数据和方程的拟合程度,越接近1拟合程度越高
将上面的数据作为抽样数据,可以估算出总体的分布,用F分布检测总体回归系数,计算出的统计量的概率和0.05比较
对总体回归做估值,在置信度为95%时计算置信区间,计算温度在31度时的置信区间
在置信度为95%时候计算预测区间,计算温度在31度时的预测区间,预测区间的取值范围要比估值区间更宽一些
观察个体的标准化残差,当个体的标准化残差的绝对值大于3时,应该剔除后再进行回归分析
使用Durbin-Watson统计量评估序列自相关程度,如果值在2左右,说明不存在序列自相关
可用尝试多种形式的方程做回归,通过观察散点图判断拟合程度比较好的函数,选择回归后的R平方大的函数
多元回归
宫野想估算在一个新的地址开店的月销售额。宫野知道营业面积越大,距离车站越近,店铺的销售额就越大。各家门店的销售数据如下表,首先画出散点图观察相关性,通过Correl函数计算相关系数,一个是0.89,一个是-0.77都相关显著
用Linest函数计算回归系数,注意Linest计算出的系数是反序的,带入系数就有了回归方程,接下来计算Syy、Se,因为多元回归中R的计算会受到自变量个数的影响,就用修正自由度的R2公式
对总体回归检验回归系数和偏回归系数的检测统计量
其中用到的S11的求解过程,A的转置用“粘贴”的时候勾选“转置”,矩阵相乘法用MMult函数,矩阵求逆用MInverse函数,S11就是对角线上第一行第一列的元素
计算估值区间和预测区间,多元回归采用马氏距离避免欧式距离的量岗的问题
多元回归的自变量可以很多,可以对自变量进行组合,用修正自由度的R平方评估后选择最好的组合。
多元回归将分类变量拆分为n-1个变量来处理,比如:性别有男、女和其他,拆分为性别男,性别女二个变量,用1,表示是,0表示否。
羽美想推测一下明天的特供蛋糕卖出去的可能性。羽美的经验告诉她周三六日客户比较多,好像和温度也有点关系。特供蛋糕的销售数据如下表,首先画出气泡图观察相关性,用气泡是因为点有密集的堆叠,通过Countif辅助列算出气泡的大小,就可以画出气泡吐了,然后用Correl函数计数相关系数。
用规划求解完成逻辑回归系数的计算,因为探测计算中可能会超出销售预测的值过小,从而导致对数释然计算的溢出失败,需要调整销售预测函数=1/(1+EXP(-IF(G2>-700,G2,-700)))做最小值的溢出保护,同时要约束系数变量不为零--AND(NOT($B$24=0),NOT($C$24=0),NOT($D$24=0)),注明:--是转换成整数
下面计算R平方的,这里n1,n0分别是样本中卖出去的个数和没有卖出去的个数,逻辑回归中R平方是越小越显著,可以计算误判率,卖出和预测卖出的相关系数观察模型精确程度。
总体系数的检测,用x2的2自由度检测
检测偏回归系数,用x2的1自由度检测
预测今天是否可以卖出去,带入方程=0.44<0.5估计是卖部出去了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15