
关于分布式数据库,你该了解的几件事
随着业务对大数据技术需求的不断演变,分布式数据库在整个生态圈中的地位愈加重要,已可预见必将成为未来大数据技术发展的又一个核心,而其中OLAP(联机分析处理)显得尤其重要。
数据库的基本理论ACID
原子性(Atomic)。整个事务中的所有操作要么全部完成,要么全部不完成,不可能停滞在中间某个环节。事务在执行过程中发生错误,会被回滚(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。
一致性(Consistent)。在事务开始之前和事务结束以后,数据库的完整性约束没有被破坏。
隔离性(Isolated)。隔离状态执行事务,使它们好像是在给定时间内系统执行的唯一操作。如果有两个事务,运行在相同的时间内,执行相同的功能,事务的隔离性将确保每一事务在系统中认为只有该事务在使用系统。这种属性有时称为串行化,为了防止事务操作间的混淆,必须串行化或序列化请求,使得在同一时间仅有一个请求用于同一数据。
持久性(Durable)。在事务完成以后,该事务对数据库所作的更改便持久地保存在数据库之中,并不会被回滚。
对于ACID的实现方式主要有两个,一个是日志式的方式(Write ahead logging),几乎所有的数据库系统(MySQL、Oracle等)都基于日志的方式。另外一种是Shadow paging,代表的数据库主要是SQLite,Android或者iOS APP开发的话应该会比较了解,但大型的数据库都不会用到。
图1 事务隔离性一览
分布式数据库的CAP理论
一致性(C)。分布式系统中所有数据备份在同一时刻的值是否相同。
可用性(A)。当集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求(可用性不仅包括读,还有写)。
分区容忍性(P)。集群中的某些节点无法联系后,集群整体是否还能继续进行服务。
图2 CAP三大定律
NoSQL分类
如果同时满足这三点,成本将会非常高,所以建议根据业务的具体需求做好平衡选择。把NoSQL做一个简单分类将包括如下几种:
Key/Value 或 ‘the big hash table’。典型的有Amazon S3 (Dynamo)、Voldemort、Scalaris、Memcached (in-memory key/value store)、Redis等。
Schema-less。典型的有Cassandra (column-based)、CouchDB (document-based)、MongoDB(document-based)、Neo4J (graph-based)、HBase (column-based)、ElasticSearch(document-based)等。
OLTP和OLAP的对比分析
目前分布式数据库主要分为两种场景——OLTP(联机事务处理)和OLAP(联机分析处理)。随着大数据技术发展,数据库选择越来越多,其主要差别包括:面向事务还是面向分析;数据内容是当前的、详细的数据还是历史的、汇总的数据;数据库设计是实体联系模型ER和面向应用的数据库设计,还是星型、雪花模型和面向主题的数据库设计等。前者指的是OLTP场景,后者指的是OLAP场景。
表1 OLTP和OLAP对比
基于分布式数据库的理论,不管是数据库的优化还是设计、使用,遇到的问题非常多。举例说,现在硬件发展很好,特别SSD,如果其设备性能远远没有达到,那么使用SSD的数据库性能该如何提高。如果只是为了满足业务当前的简单需求,可以把现在很多数据库的传输引擎存储直接换成SSD,可以快速地解决很大的问题。另外还有一个很经典的问题,怎么保证在高可靠的前提下提高数据库插入和查询性能。刚才说的是单机模式,多机的分布式模式下又该怎么提高数据调用性能,也有许多挑战。总之,一定要根据业务的需求来选择最合适自己的数据库系统。
HBase
在HBase的设计原则中,每个列族可以包含任意多的列,每个列可以有任意多的版本,列只有在有值时才存在,列本身是排序的。
重点看一下Zookeeper的模型,它用了一个非常经典的模型叫Leader/Follower。举个例子说,在去餐厅吃饭时,进餐厅肯定有领班把你领过去,安排到某个座位,点菜则不是他的工作,而由其同事完成,这是非常传统的半同步模型。而Leader/Follower模型是领班把你领过去帮你点菜,他在之前会再选一个Follower做Leader,通过选举制来实现,这样会减少线程的调度,这对数据库的性能会有很大的提升。
图3 HBase中的功能实现
ElasticSearch(ES)
对于分布式数据库里把ElasticSearch也作为一种分布式数据库是有原因的,如果需要快速查询,但列很多,HBase的SQL支持不太好,使用不方便。而ES对于前端工程师开发非常简单,不需要对分布式数据库内核了解很深就可以很快使用起来,而只需要了解RestfulAPI就可以了,并且也很方便。ES底层都是分布式的Lucene,如Github使用Elasticsearch搜索20TB的数据,包括13亿的文件。ES的模型比较清晰比较简单,就两个步骤,一个步骤是怎么把数据建索引,建完索引主要是做查询,怎么把SQL的语句做查询。
图4 ElasticSearch亮点
ES最重要的是建索引,每个的记录都会根据需求建索引,这么做有好有坏——如果突然来了100亿条记录,建索引的时间会很长,对于业务索引是不能忍受的。所以如果支持离线建立索引,后面实时增量建索引这样会更好,目前ES这个模型还不能支持。 但是ES时下已发展的比较成熟,现在能对接的接口都能支持,所以是非常方便的。
分布式数据库系统对比
图5 ElasticSearch功能模块
这里主要对比Pinot和Druid,支持多维度实时查询的分布式系统。
表2 Druid和Pinot功能实现对比
由于Pinot跟ES系统架构很类似,而Pinot比Druid支持存储格式更多一些,所以我们用Pinot和ES做了一个性能测试对比,测试条件如下:
记录条数分为100亿以内和1000亿条
服务器数量为70台,配置为:CPU 12核,内存96G,硬盘48T
测试语句:select count(*) from test where age > 25 and gender > 0 and os > “500” and sc in (“0001009″,”0002036″,”0016030″,”…”) or bs>585 and group by age,gender,os,bs
总共12列:动态列为3列(多值列),普通列为9列
表3 ElasticSearch和Pinot百亿条检索对比
表4 ElasticSearch和Pinot千亿条检索对比
对于Pinot和ES有一个共性,他们都有多值列的属性,即类似的属性可以放入同一列,这样查的话大部分需要把一个列的数据查出来,从而更有益于性能。
业务需求:
1.每天请求数超过 100 亿
2. 每天增长超过 5TB 级数据
3. 每天对几千亿条记录进行上 1000 种维度的计算
4. 客户有流式、实时、离线需求
图6是系统数据流程。
图6 系统数据流程
数据采集用WebService,如Nginx;数据收集服务用Kafka和Flume;数据清洗服务Storm,采用Storm主要有下面两个原因,业务需求在毫秒级需要;有严格要求的时间序列,如原来输入是1、2、3、4、5,输出还必须是1、2、3、4、5。其他用Spark Streaming将会比较好。
接下来把Kafka分流出来的数据对应每一条不同的业务,然后导入对应的存储,如HBase、HDFS等,通过不同的流来解决不同的业务问题,然后基于不同存储做各种算法分析;最后将各种结果数据导入ElasticSearch或者MySQL给前端做数据可视化。
通过阅读上述知识相信各位对分布式数据库的发展和不同系统的技术特点已经有了一定的了解,限于篇幅的原因,笔者以分享几个ES的使用心得结束:
1.用 ES 的 Alias 特性实现数据的水平扩展。
2. 用 Kibana 分析和展现数据(ELK三剑客)可以满足很多公司业务80%以上的需求,ELK是指ElasticSearch、Logstash、Kibana,它们分别功能为:ElasticSearch是负责日志检索和分析;Logstash负责日志的收集,处理和储存;Kibana负责日志的可视化,建议用Kibana4版本。
3. 多条件聚合查询,布尔查询。
4. 定制分词插件(IK),实现对特殊字符的精确匹配,目前现在主流的搜索引擎在搜索关键词的时候对标点符号是忽略的,但是在实现一些对监控微博等社交数据时,如果微博里有很多符号,举例来说“:)”其实代表的是笑脸,而笑脸对于我们来判断正负面是非常有用的,所以判断正负面不只是语义分析的,还有对标点符号分析也非常重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15