数据分析过程中容易犯哪些错误? 在进行数据分析的过程中,因为流程的复杂性,涉及的范围比较广,数据分析人员在进行数据分析的过程中都容易犯哪些错误呢? 第一、数据的缺乏,数据分析的进行时必须要建立 ...
2016-03-20前方注意:数据分析可不是数据挖掘 说到数据分析或者数据挖掘,很多人都会认为是一样的,特别是对于外行人来说,只要是和数据有关系的,可以得到数据价值的,应该都会被认为是数据分析,但是企业想要更加深层次 ...
2016-03-20网站数据分析的四个层次 网站数据分析很大程度上会比较依赖网站数据分析工具,市场上对于网站数据分析的工具也是比较多的,有免费的也有收费的,但是是不是可以有一个网站数据分析工具可以实现所有网站分析的功 ...
2016-03-20大数据分析师—站在时代顶端的人 据最新的数据报告显示,在数据及数据管理领域的十大IT职位中,收入水平最高的是数据仓库经理,职位起薪在11万美元到15万美元不等。其他职位也均高出IT行业平均水平,在大数据时 ...
2016-03-20大数据安全分析常见问题汇总 大数据时代的浪潮滚滚向前,大数据分析工具作为最前沿的大数据应用技术而备受瞩目。现在市场上也出现了不少大数据产品,那么如何客观地评价大数据分析工具的性能?我们或许可以从以 ...
2016-03-20大数据安全分析常见问题汇总 大数据是时下最火热的IT行业的词汇,随之数据仓库、数据安全、数据分析、数据挖掘等等围绕大数量的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。 本人在与用户沟通大数据 ...
2016-03-20数据分析的几大误区 上大学时,我和另一个姑娘(某理科大神)经常搭伙做饭。有天我俩一起去超市买油,站在琳琅满目的货架前,我直接拎起一瓶,冲她叫:“就拿这瓶吧,最便宜!”姑娘白了我一眼,转头说道:“ ...
2016-03-19SPSS进行独立样本的T检验 对于相互独立的两个来自正态总体的样本,利用独立样本的T检验来检验这两个样本的均值和方差是否来源于同一总体。在SPSS中,独立样本的T检验由“Independent-Sample T Test”过程来完成 ...
2016-03-19数据分析工作的思考与总结 基于现有的业务知识和统计学基础知识及基本思想的理解与掌握,通过数据库及统计分析工具对数据的调取与处理、分析,达到对现有问题or主题的探索与剖析,最终实现业务问题的解决or优化 ...
2016-03-19统计中分类算法总结 对于很多做统计的人员来说,对统计中的算法知道的不是很全面,下面就对统计中分类算法做个总结。 数据转换 主要有两种: l归一化处理 主要通过把数据归一到一特定的区间范围,如 ...
2016-03-19数据挖掘十大算法总结--核心思想,算法优缺点,应用领域,数据挖掘优缺点 本文所涉算法均只概述核心思想,具体实现细节参看“数据挖掘算法学习”分类下其他文章,不定期更新中。转载请注明出处,谢谢。 参考 ...
2016-03-19Storm常见问题及解决方案总结 Storm 是一个开源的、大数据处理系统,与其他大数据解决方案的不同之处在于它的处理方式。Hadoop 在本质上是一个批处理系统。数据被引入 Hadoop 文件系统 (HDFS) 并分发到各个节点 ...
2016-03-19如何做好数据分析的第一步,数据埋点呢? 要怎么解决这些问题呢?答案是数据埋点。首先通过产品定位及目标来确定自己需要哪些数据,其次通过在产品各个流程环节中设置数据埋点,最后,当用户使用产品时,后台 ...
2016-03-18如何基于Spark进行用户画像? 近期,comSysto公司分享了该公司研发团队利用Spark平台解决Kaggle竞赛问题的经历,为Spark等平台应用于数据科学领域提供了借鉴。 主办方提供了一个包含5万个匿名驾驶员线路 ...
2016-03-18数据分析:数据清洗的一些梳理 数据清洗, 是整个数据分析过程中不可缺少的一个环节,其结果质量直接关系到模型效果和最终结论。在实际操作中,数据清洗通常会占据分析过程的50%—80%的时间。国外有些学术机构会 ...
2016-03-18随着大数据的不断成熟,这个词本身可能会消失或者变得过时,没有人会使用它了。它是成功通过技术,变得很普遍,无处不在,并最终无形化。 技术型的高科技创业公司都是喜欢闪闪发光的新东西,而\"大数据\ ...
2016-03-18企业该怎样利用大数据进行精准营销 谷歌每天要处理大约24PB的数据,百度每天大概新增10TB的数据,腾讯每日新增200-300TB的数据,淘宝每日订单超过1000万,阿里巴巴已经积累的数据量超过100个PB。对任何拥有特 ...
2016-03-18本文首发于微信公众号号“编程派”。微信搜索“编程派”,获取更多Python编程一手教程及优质资源吧。 有同学曾在微信中问小编什么是非局部语句(nonlocal statement),本文就是对此的回答,希望没有发的太晚。 非 ...
2016-03-17数据科学家和大数据技术人员工具包 数据科学家的常用工具与基本思路,数据分析师和数据科学家使用的工具综合概述,包括开源的技术平台相关工具、挖掘分析处理工具、其它常见工具等几百种,几十个大类,部分 ...
2016-03-17系统实例 从系统角度审视大数据计算的特征及难点 大数据计算是实现大数据“巨大价值”的必要手段,而计算系统是大数据计算的有效载体。试着从系统角度审视大数据计算,透过大数据的体量巨大、速度极快 ...
2016-03-17Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04