
Storm常见问题及解决方案总结
Storm 是一个开源的、大数据处理系统,与其他大数据解决方案的不同之处在于它的处理方式。Hadoop 在本质上是一个批处理系统。数据被引入 Hadoop 文件系统 (HDFS) 并分发到各个节点进行处理。当处理完成时,结果数据返回到 HDFS 供始发者使用。Storm 支持创建拓扑结构来转换没有终点的数据流。不同于 Hadoop 作业,这些转换从不停止,它们会持续处理到达的数据。
1、storm集群配置JDK环境变量问题
问题分析:在linux系统下配置JDK后一般修改/etc/profile值进行环境变量配置,但是安装storm集群时会出现问题
问题解决:需要在/etc/.bashrc文件中也加入环境变量不然安装的JDK无法使用。
2、supervisor相关问题
1)安装后supervisor名称相同并且启动报错问题
问题分析:supervisor.cji中有行代码如下:
1
|
|
此代码是在启动supervisor时会找本机的hostname。
问题解决:修改每天机器的hostname与其相对应即可。
2)启动Supervisor 时,出现java.lang.UnsatisfiedLinkError异常
具体错误信息如下:
1
2
3
|
启动Supervisor 时,出现java.lang.UnsatisfiedLinkError:
/usr/local/lib/libjzmq.so.0.0.0: libzmq.so.1: cannot open shared object
file: No such file or directory 异常。
|
问题分析:未找到zmq 动态链接库。
问题解决1:配置环境变量 export LD_LIBRARY_PATH=/usr/local/lib
问题解决2:编辑/etc/ld.so.conf 文件,增加一行:/usr/local/lib,再次执行即可
使用sudo ldconfig 命令,重启Supervisor
3、发布topologies时,序列化log4j.Logger异常
问题分析:日志系统无法正确正确处理序列化操作
问题解决:使用slf4j替换log4j日志jar包处理
4、提交topology时出现如下异常:
1
2
3
4
5
6
|
Exception in thread "main" java.lang.IllegalArgumentException: xxx host is not set
at backtype.storm.utils.NimbusClient.(NimbusClient.java:30)
at backtype.storm.utils.NimbusClient.getConfiguredClient(NimbusClient.java:17)
at backtype.storm.StormSubmitter.submitJar(StormSubmitter.java:78)
at backtype.storm.StormSubmitter.submitJar(StormSubmitter.java:71)
at backtype.storm.StormSubmitter.submitTopology(StormSubmitter.java:50)
|
问题分析:启动nimbus没有问题,异常原因是conf_dir路径设置错误
问题解决:修改bin/storm脚本,增加如下代码:
1
|
CONF_DIR = STORM_DIR + "/conf"
|
5、在使用storm0.7一下版本时,时间长会出现outofmenmory
问题分析:低于storm0.7版本的没触发一个tuple会创建一个hashmap存储该tuple所在的消息树结构,长时间会给gc造成巨大的压力导致出现outofmemory
问题解决:升级storm版本即可解决问题。
6、storm连接mysql数据库报异常
1
|
message from server:"Host FILTER" is not allowed to connect to this MySQL server
|
问题分析:可能是没有给其IP访问Mysql数据库权限导致
问题解决:登录mysql数据库,执行如下命令:
1
|
grant all on *.* to root@'%' identified by "123456";
|
此操作是给任意IP地址赋予访问权限(命令中*.*是通配任何IP,可指定IP 用户名:root 密码:123456)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29