京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业该怎样利用大数据进行精准营销
谷歌每天要处理大约24PB的数据,百度每天大概新增10TB的数据,腾讯每日新增200-300TB的数据,淘宝每日订单超过1000万,阿里巴巴已经积累的数据量超过100个PB。对任何拥有特有数据的公司,都应该考虑怎么让数据盈利。
一、数据收集没那么复杂,重要的是发现
很多企业甚至是互联网企业,或者不知道该如何使用手中已有的数据资源,白白浪费掉优化改进的好机会;或者认为大数据只有互联网巨头才有,一个小网站或APP应用是没有大数据的,果真如此吗?
随便举个例子:法国的一些航空公司推出免费的APP方便旅客在移动设备上跟踪自己的行李,之后在追踪的数据平台上发现一部分商务旅行客户中途在某一城市进行短暂的商业会晤不需入住酒店,行李成了累赘,于是航空公司推出专人看管全程可追踪的增值服务,此项服务每周的新创造大概可达100万美元。
正是基于对数据的洞察产出附加价值。对数据的掌控,就是对市场的支配,意味着丰厚的投资回报。
二、数据是有情绪的
数据的形式多种多样,呈数量级爆发的UGC内容(User-generated Content——用户生产内容)如何可以被我们拿来运用?比如飞泻而下的中国股市,股民巨量的埋怨和牢骚能以怎样的数据化形式展示?“除了耐心等待,最好再找个地方让自己发泄一下,找些跟自己同病相怜的人,还能缓解一下压力,避免跳楼。弹幕,就是最好的形式了。”——有人建了一个网站,在K线图上配上弹幕供吐槽。
结果被同样郁闷的股民玩的特别魔性,汇集出的数据随着K线走势变化拥有了实时鲜明的情绪特征,可以在一定程度上预估使用者下一步卖出或继续持有的动向。
三、基本的5W1H问答即可玩转消费行为数据
消费数据可综合为5W1H:
1.Who&Whom:潜在用户分类?谁是决策者?谁是使用者?谁对决定购买有重大影响以及谁是实际购买者?
2.What:不同品牌的市场占有率、具体型号的销售情况;
3.When:了解在具体的季节、时间甚至时点所发生的购买行为,比如配合节假日促销;
4.Where:研究适当的销售渠道和地点,还可以进一步了解消费者是在什么样的地理环境、气候条件、甚至于地点场合使用;
5.How:了解消费者怎样购买、喜欢什么样的促销方式,比如是去线下体验店还是看测评等;
6.Why:探索消费者行为动机和偏好,比如为什么喜欢特定的款式并拒绝别的品牌或型号;
不同特征的消费者会产生不同的心理活动的过程,通过其决策过程导致了一定的购买决定,最终形成了消费者对产品、品牌、经销商、购买时机、购买数量的选择。
数字营销人员如果能比较清楚地了解各类购买者对不同形式的产品、服务、价格、促销方式的真实反应,就能够适当地影响、刺激或诱发购买者的购买行为。
四、数据是拿来用的,不仅仅是拿来看
买一只股票尚需数据分析,展开一项持续的广告营销活动当然更应该建立在有数据衡量的基础上。
比如Uber的数据科学家建立了“基于地理位置的打车需求模型”(Location-based demand model),每天实时更新的热点地图可以有效帮助车主缩短空载时间,同时帮乘客减少等待时长。下一步,车主会知道提前去哪里等待可以载到更多的乘客。
数据的使用能够对企业的经营对象从客户的粗略归纳还原成一个个活生生的客户,了解他们喜欢什么讨厌什么,并更有针对性,越能满足客户的需要,投资回报率就更高。
广告主通过数字营销,更可能运用全新的视角来发现新的商业机会和重构新的商业模式。过去看不到的东西都能看到了,即有了全新的视野。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23