大数据时代:数据和算法,谁更重要? 我知道很多人自始至终都认为数据是越多越好,即大数据越大越好,Google甚至直言:更多的数据胜过更好的算法,而过去很多侦探剧中崇尚“信息越多,就越靠近真相”的刑侦金句 ...
2016-04-02如何处理数据中的缺失值 现实世界中的数据往往非常杂乱,未经处理的原始数据中某些属性数据缺失是经常出现的情况。另外,在做特征工程时经常会有些样本的某些特征无法求出。路漫漫其修远兮,数据还是要继续挖的 ...
2016-04-01数据挖掘问答精选收藏 1.现在有大数据、精准挖掘、人工智能等这么多概念及技术,它们之间的关系以及企业大数据实施的路线图应该是怎样的? 来自用户 SmartMining 的回答: 大数据、数据挖掘、人工智 ...
2016-04-01市场细分如何帮助你构建更好的预测模型? 但是,这真的有必要吗?我们可不可以创建一个单独的模型和使它含有区融变量作为模型的输入。 这可能可以。特别是根据市场细分创建细分模型可能是一件吃力不讨 ...
2016-04-0110个表明数据科学能力成熟的迹象 通常情况下,我们的业务已经转向为练习组织运作方式的转型——“建设一种能力”意味着建设一种文化来支持和充分利用数据科学。在许多情况下,这种文化的改变能够为世界上的许多 ...
2016-04-01机器学习中的梯度下降法 最优化问题是机器学习算法中非常重要的一部分,几乎每一个机器学习算法的核心都是在处理最优化问题。 本文中我讲介绍一些机器学习领域中常用的且非常掌握的最优化算法,看完本篇文章 ...
2016-04-01用大数据时别辜负了你的大数据分析法 许多企业投下数百万美元用于大数据、分析法,并雇用数据分析家,但却感到很受挫。无可否认,他们现在得到了更多、更好的数据。他们的分析师和分析法也是一流的。但经理人 ...
2016-04-01数据分析与统计推断:线性回归 相关性(correlation) 相关性描述了两个变量之间线性关联的强度,表示符号为R。 属性: 相关系数的幅度(绝对值)测量两个数字变量之间线性关联的强度 相关系数 ...
2016-03-31数据分析(BI商业智能)六大领域 今天的企业,身处一个信息的产生、采集、整合、反馈与决策都空前加速的时代。企业目前在运营管理方面面临的挑战,正如同航空飞行在20世纪后半期喷气发动机技术问世以后,所面 ...
2016-03-31大数据也有分析不了的信息 做决策前可以靠那些数据进行参考,但也别忘记商业建立在信任之上。信任是一种披着情感外衣的互惠主义。在困境中做出正确决策的人和机构能够赢得自尊和他人的尊敬,这种感情上的东西是 ...
2016-03-31本文为CDA作者青菜原创文章,转载请注明来源 编者按:CDA作者青菜将在近期发布「Excel简化办公」系列文章,本文是第四篇;更多精彩请持续关注~ 1.恢复未保存的excel文档 「做了30分钟的客户 ...
2016-03-31数据分析师:数据过大将妨碍分析洞察 大数据对使用者来说看似意味着好的洞察,但过量的数据并不一定带来更好的洞察,统计学家Nate Silver这样认为,他是美国最著名的数据分析师。“数据量越大,人们可以用来证 ...
2016-03-31小白学数据分析:留存率问题的分析 最近在做留存分析时,遇到了不少的情况,也经常会有人问我,为什么我的游戏突然次日留存率降了一半。如果留存率是单单作为一个简单的指标的话,那对你价值还是蛮有限的,今 ...
2016-03-31如何让你的分析报告更具洞察力?实现从数据到观点的五点分享! 大数据比任何时候都谈论的多,因此公司的管理层比以往任何时间都希望通过数据分析得到他们感兴趣的东西,因此都会为此组建一支网站分析团队去发现 ...
2016-03-31浅析R语言的优势和缺点 R编程语言在数据分析与机器学习领域已经成为一款重要的工具。随着机器逐步成为愈发核心的数据生成器,该语言的人气也必然会一路攀升。不过R语言当然也拥有着自己的优势与缺点,开发人员 ...
2016-03-30R语言(入门小练习篇) 问题: 一组学生参加了数学、科学和英语考试。为了给所有的学生确定一个单一的成绩衡量指标,需要将这些科目的成绩组合起来。另外,还想将前20%的学生评定为A,接下来20%的学生评定为 ...
2016-03-30大数据分析要打破教条 近年来,大数据已经成为一个炙手可热的名词。无论是行业内还是行业外的人,都纷纷将目光投注在这个新兴的技术上。随着大数据概念的普及和技术的应用,大数据分析和大数据分析工具也纷纷出 ...
2016-03-30SPSS学习笔记之——Kaplan-Meier生存分析 一、概述 关于生存分析的相关概念,Kaplan-Meier用于估计生存函数,允许有一个分组变量进行生存率的组间比较,还容许一个分层变量。若不考虑其他混杂因素下生存分 ...
2016-03-30数据挖掘(聚类分析) 数据挖掘对聚类算法的要求:可伸缩性(在小数据集上算法优,同样要求在大数据集上算法优)、处理不同类型数据的能力、发现任意形状簇的能力、输入参数的领域知识最小化、处理噪声数据的能 ...
2016-03-30本文为知乎答主Jason Francis原创 CDA数据分析师已获作者授权转载 个人感觉跟国外的数据可视化作品比起来,目前国内实践着的大部分数据可视化作品都是渣!!!想当年,作为一度痴迷数据新闻可视化的学生,羡慕infor ...
2016-03-29CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11