京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据时别辜负了你的大数据分析法
许多企业投下数百万美元用于大数据、分析法,并雇用数据分析家,但却感到很受挫。无可否认,他们现在得到了更多、更好的数据。他们的分析师和分析法也是一流的。但经理人对业务的想法和争论,似乎与过去的类型仍一样,只是他们使用的数据与分析法都比以前好得多。最终的决定可能是更加由数据驱动(data-driven),但组织文化给人的感觉仍然相同。正如一位CIO最近告诉我的,“我们现在可以做实时的分析,那是我在五年前根本无法想象的,但这么所带来的影响力,仍与我的预期差距很远。”
怎么回事?我曾协助《财富》杂志1000大企业举办了几场大数据与分析法会议,并花费大量时间协助一些似乎对投资在分析法上的回报感到很满意的组织,结果一个明确的“数据启发法”(data heuristic)出现了。分析成果为平庸到中等的企业,用大数据和分析法来支持决策;而“分析报酬率”(Return on Analytics,简称ROA)良好的企业,使用大数据和分析法来推动并维持行为的改变。较好的数据驱动分析不仅仅是纳入既有的流程和检讨会,它们还被用来创造及鼓励不同类型的对话和互动。
“要等到管理阶层确认想要改变、并清楚知道影响的行为是什么之后,我们才会去做分析或商业情报的工作,”一位金融服务公司的CIO说。“提高合乎法规的情况和改善财务报告,是很容易获得的成果。但是,这只意味着我们使用分析法去做我们已经做得比以前好的事情。”
真正的挑战是洞察,利用大数据和分析法,以改善解决问题和决策的方式,会掩盖组织里一个现实情况,那就是新的分析法往往需要新的行为。公司人员可能需要作更多分享和协力合作;各部门可能需要设置不同的或互补的业务流程;经理人和高级主管可能需要确保,现有的激励措施不会破坏分析带来的成长机会和效率。
例如,一家医疗用品供货商整合有关“能带来最多利润的客户”和“最赚钱产品”的分析,必须对业务人员与技术支持团队进行完整的再教育,两者都是为了“打扰” 并“教育”客户有关附加价值较高的产品。这家公司了解,这些分析法不应该只是被用来支持现有的销售和服务实务,而应该被视为一种契机,可推动新型的促进式(facilitative)和顾问式(consultative)销售及支持组织。
讽刺的是,大数据和分析法的质量,不如分析的目的来得重要。最有趣的紧张态势和争论,始终围绕着组织是否会因使用分析法而获得最大报酬,以使既有的流程行为(process behavior)更完善,或者改变公司人员的行为。但大致的共识是,最有成效的对话聚焦于分析如何改变行为,而非解决问题。
“我们组织内的大多数人,历史课的表现优于数学课,”一位消费性产品分析主管告诉我。“要让公司人员了解新信息和指标可能会如何改变他们的做事方式,是比较容易的,要让他们了解根本的算法则比较困难……我们好不容易才学到,‘翻墙’(over-the-wall)数据和分析法,不是让我们的内部客户从工作中获得价值的好办法。”
得到正确的答案,甚至是问正确的问题,原来不是拥有高ROA企业的主要关切点。无可否认,数据与分析法的问题、答案,都是重要的。但更重要的是,这些问题、答案及分析法,如何与个人与机构的行为协调一致(或彼此冲突)。有时候,即使是最好的分析法也可能引发适得其反的行为。因此,不要辜负了你的分析法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16