
机器学习中的梯度下降法
最优化问题是机器学习算法中非常重要的一部分,几乎每一个机器学习算法的核心都是在处理最优化问题。
本文中我讲介绍一些机器学习领域中常用的且非常掌握的最优化算法,看完本篇文章后你将会明白:
什么是梯度下降法?
如何将梯度下降法运用到线性回归模型中?
如何利用梯度下降法处理大规模的数据?
梯度下降法的一些技巧
让我们开始吧!
梯度下降法是一个用于寻找最小化成本函数的参数值的最优化算法。当我们无法通过分析计算(比如线性代数运算)求得函数的最优解时,我们可以利用梯度下降法来求解该问题。
想象一个你经常用来吃谷物或储存受过的大碗,成本函数的形状类似于这个碗的造型。
碗表面上的任一随机位置表示当前系数对应的成本值,碗的底部则表示最优解集对应的成本函数值。梯度下降法的目标就是不断地尝试不同的系数值,然后评估成本函数并选择能够降低成本函数的参数值。重复迭代计算上述步骤直到收敛,我们就能获得最小成本函数值对应的最优解。
梯度下降法首先需要设定一个初始参数值,通常情况下我们将初值设为零(coefficient=0coefficient=0),接下来需要计算成本函数 cost=f(coefficient)cost=f(coefficient) 或者 cost=evaluate(f(coefficient))cost=evaluate(f(coefficient))。然后我们需要计算函数的导数(导数是微积分的一个概念,它是指函数中某个点处的斜率值),并设定学习效率参数(alpha)的值。
coefficient=coefficient−(alpha∗delta)
coefficient=coefficient−(alpha∗delta)
重复执行上述过程,直到参数值收敛,这样我们就能获得函数的最优解。
你可以看出梯度下降法的思路多么简单,你只需知道成本函数的梯度值或者需要优化的函数情况即可。接下来我将介绍如何将梯度下降法运用到机器学习领域中。
所有的有监督机器学习算法的目标都是利用已知的自变量(X)数据来预测因变量(Y)的值。所有的分类和回归模型都是在处理这个问题。
机器学习算法会利用某个统计量来刻画目标函数的拟合情况。虽然不同的算法拥有不同的目标函数表示方法和不同的系数值,但是它们拥有一个共同的目标——即通过最优化目标函数来获取最佳参数值。
线性回归模型和逻辑斯蒂回归模型是利用梯度下降法来寻找最佳参数值的经典案例。
我们可以利用多种衡量方法来评估机器学习模型对目标函数的拟合情况。成本函数法是通过计算每个训练集的预测值和真实值之间的差异程度(比如残差平方和)来度量模型的拟合情况。
我们可以计算成本函数中每个参数所对应的导数值,然后通过上述的更新方程进行迭代计算。
在梯度下降法的每一步迭代计算后,我们都需要计算成本函数及其导数的情况。每一次的迭代计算过程就被称为一批次,因此这个形式的梯度下降法也被称为批量梯度下降法。
批量梯度下降法是机器学习领域中常见的一种梯度下降方法。
处理大规模的数据时,梯度下降法的运算效率非常低。
因为梯度下降法在每次迭代过程中都需要计算训练集的预测情况,所以当数据量非常大时需要耗费较长的时间。
当你处理大规模的数据时,你可以利用随机梯度下降法来提高计算效率。
该算法与上述梯度下降法的不同之处在于它对每个随机训练样本都执行系数更新过程,而不是在每批样本运算完后才执行系数更新过程。
随机梯度下降法的第一个步骤要求训练集的样本是随机排序的,这是为了打乱系数的更新过程。因为我们将在每次训练实例结束后更新系数值,所以系数值和成本函数值将会出现随机跳跃的情况。通过打乱系数更新过程的顺序,我们可以利用这个随机游走的性质来避免模型不收敛的问题。
除了成本函数的计算方式不一致外,随机梯度下降法的系数更新过程和上述的梯度下降法一模一样。
对于大规模数据来说,随机梯度下降法的收敛速度明显高于其他算法,通常情况下你只需要一个小的迭代次数就能得到一个相对较优的拟合参数。
本节列出了几个可以帮助你更好地掌握机器学习中梯度下降算法的技巧:
绘制成本函数随时间变化的曲线:收集并绘制每次迭代过程中所得到的成本函数值。对于梯度下降法来说,每次迭代计算都能降低成本函数值。如果无法降低成本函数值,那么可以尝试减少学习效率值。
学习效率:梯度下降算法中的学习效率值通常为0.1,0.001或者0.0001。你可以尝试不同的值然后选出最佳学习效率值。
标准化处理:如果成本函数不是偏态形式的话,那么梯度下降法很快就能收敛。隐蔽你可以事先对输入变量进行标准化处理。
绘制成本均值趋势图:随机梯度下降法的更新过程通常会带来一些随机噪声,所以我们可以考虑观察10次、100次或1000次更新过程误差均值变化情况来度量算法的收敛趋势。
本文主要介绍了机器学习中的梯度下降法,通过阅读本文,你了解到:
最优化理论是机器学习中非常重要的一部分。
梯度下降法是一个简单的最优化算法,你可以将它运用到许多机器学习算法中。
批量梯度下降法先计算所有参数的导数值,然后再执行参数更新过程。
随机梯度下降法是指从每个训练实例中计算出导数并执行参数更新过程。
如果您对于梯度下降法还有疑问,请在评论区留下你的问题,我将尽我所能回答。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18