
做产品的同学在产品上线后经常离不开一个词,数据分析。那么要如何进行数据分析呢?不妨先问自己这么几个问题。
你要分析什么问题?是找问题还是验证?
关于这些问题你需要哪些数据?
这些数据从哪里来?
要怎么解决这些问题呢?答案是数据埋点。首先通过产品定位及目标来确定自己需要哪些数据,其次通过在产品各个流程环节中设置数据埋点,最后,当用户使用产品时,后台就能源源不断地接收到数据了。
那么,问题又来了。如何做好数据分析的第一步,数据埋点呢?还是从三个问题来回答
初级的数据埋点:在产品流程关键部位植相关统计代码,用来追踪每次用户的行为,统计关键流程的使用程度。
中级的数据埋点:在产品中植入多段代码追踪用户连续行为,建立用户模型来具体化用户在使用产品中的操作行为。
高级的数据埋点:与研发及数据分析师团队合作,通过数据埋点还原出用户画像及用户行为,建立数据分析后台,通过数据分析、优化产品。
一个简单的逻辑:你不做数据埋点,你就做不了数据分析。你不做数据分析,你就会不知道产品上线情况。你不知道产品上线情况,你产品就会做差。你产品做差,你的业绩就会不好。你业绩不好你就会被辞,你被辞就会没钱。你没钱就会去睡马路。你睡马路你就可能会被车撞,你被车撞就会…
所以为了不被车撞,一定要做好数据埋点!
(1)数据埋点的内容
数据埋点可以分为产品内部埋点和市场埋点,内部埋点通常分析用户使用产品的行为及流程,提升用户体验。市场埋点分析该产品在市场上的表现及用户使用场景,如产品在不同市场和地域的下载量,不同地域人群使用时间等等。
产品流程通常分为主干流程和分支流程,所以相应的数据埋点可以分为主干埋点和分支埋点,数据埋点通常不会一步搞定,在产品的第一次上线时通常会埋以下几个点:PC&Web端会统计产品的PV/UV,注册量,主要流程页面之间的转化率、日活人数等等。而移动端还要统计产品在Appstore,各大安卓市场的下载量。
第二次埋点会根据产品目标及上线后的问题进行分析。比如,当你发现产品首页的UV很高, 注册量却非常低,你就需要分析出用户在首页的行为,如30%的用户退出了产品,60%的用户进入了注册页,但只有1%的用户注册了该产品。这也就意味着,注册流程可能出现了问题,需要进一步细化注册各个流程,增加数据埋点,分析各个流程之间的转化率,找到产品出现的问题并解决。
具体到自己的产品,怎么数据埋点,就需要根据自己产品的任务流及产品目标来设计。这是一个由粗到细,优化迭代的过程。
(2)分析方法
任务流程分析法:根据产品设计的任务流,在任务流开始和结束处埋点,分析用户处理任务的情况。
页面转化分析法:统计相关页面的转化率及页面元素点击率,分析用户行为。
情景分析法:列出各种用户使用场景,自己或多人体验不同场景下产品的使用流程,寻找依据设立数据埋点,通过数据反馈验证用户行为。
(3)数据埋点的方式
目前主流的数据埋点方式分为两种:
第一种:自己公司研发在产品中注入代码统计,并搭建起相应的后台查询。
第二种:第三方统计工具,如友盟、百度移动、魔方、App Annie、talking data等。
最后,还是要说,数据埋点是产品数据分析的基础,也是个循序渐进的过程。基础的数据分析并不难,让数据来驱动产品迭代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01