移动应用如何埋点收集什么数据以便于统计分析? 问题一,其实这是个对于入门级产品的必备课程,通常在那个环节埋点可以转化为——对于一个app核心指标是什么?这些指标的优先级如何排序? 要回答这个问题, ...
2016-03-14产品新人如何入门:需求分析 产品新人入门系列,已经在大家的陪伴下走过了整整五期,前几期我们已经对产品经理的概念、思维习惯、软实力、硬实力对产品经理有了一定的了解,我们已经了解一个产品从无到有,需要 ...
2016-03-14对大数据分析有哪些流行误解? 大数据是一个新概念,大数据产生的背景是整个社会走向数字化,特别是社交网络和各种传感设备的发展。大数据分析拥有自身的特点,与计量经济学既有区别又有联系。当前对大数据的分 ...
2016-03-14数据如何指导产品设计 两年之前,那时我刚开始做产品,当需要做数据分析时,我总是一头雾水,完全不知道该如何下手。我想做好,我真的非常想做好,可我却真的不知道该怎么做。经过这两年大大小小项目的不断锤炼 ...
2016-03-14什么叫对数据敏感?怎样做数据分析? 今天讲一下我对数据的理解。 一、从数据维度做拆分,让目标更加落地 我做过近两年的电商运营,其中感触很深的一个点就是从数据的维度对目标做拆分。 天猫的双11刚刚 ...
2016-03-14电子商务数据分析三年工作总结:无细分,毋宁死 就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利 ...
2016-03-14大数据分析:六大诀窍解决大数据主要问题 每次在为一家企业搭建大数据平台的起步阶段,他们总是向我展示各种他们采用的各种前沿技术,还有他们视若珍宝的数据储备。但是毫不避讳地讲,我根本不想在这个阶 ...
2016-03-14在Twitter“玩”数据科学是怎样一种体验 关于如何成为一名数据科学家的讨论有很多很多。尽管这些探讨信息量都很大(我便是众多受益者之一),人们总是倾向于过分强调技术、工具和技巧的重要性。我以为,对于那些 ...
2016-03-13R语言中大型数据集的回归 众所周知,R语言是一个依赖于内存的软件,就是说一般情况下,数据集都会被整个地复制到内存之中再被处理。对于小型或者中型的数据集,这样处理当然没有什么问题。但是对于大型的数据集 ...
2016-03-12数据挖掘的六大步骤 数据挖掘(Data Mining),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。 此过程包括以下六个基 ...
2016-03-12统计名词和数据挖掘术语大盘点 一、数据挖掘术语 【算法】指的是用于实现某一数据挖掘技术-如分类树、辨识分析等等的特定程序。 【属性】也被称为“特性”、“变量”、或者从数据库的观点,是一个“域” ...
2016-03-12点击流数据中非结构化数据的挖掘 非结构化数据是大数据数据多样化的的一个特点,而点击流中的数据是多样化数据的一部分。依托强大的网站分析工具,可以得到最细粒度的原始数据(Raw Data),如果这些原始数据仅 ...
2016-03-12数据挖掘系列:用户画像之用户标签 用户画像(User Profile),作为大数据的根基,它完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础,奠定了 ...
2016-03-12电子商务数据分析师(数据挖掘) 14年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来, ...
2016-03-12朋友在使用Excel中遇到了难题,他想把数据区域中所有的奇数行设为相同的行高。当然,按住Ctrl键可以一一点选不连续的奇数行,但对于他的数千行数据来说,显然这是不明智的,而且稍有差池,前功尽弃。苦思冥想, ...
2016-03-11数据挖掘:如何寻找相关项 数据科学家需要具备专业领域知识并研究相应的算法以分析对应的问题,而数据挖掘是其必须掌握的重要技术。以帮助创建推动业务发展的相应大数据产品和大数据解决方案。EMC最近的一项调 ...
2016-03-11数据分析已经得到广泛的应用 数据分析是一个过程,它采用适当的分析方法将搜集而来的大量数据资料进行整合分析,再从中提取那些有用的数据信息进行研究与总结。这个过程也支持质量管理体系。数据分析非常实用, ...
2016-03-11中美数据分析大不同 张溪梦和他所创办的GrowingIO(北京易数科技有限公司)一直都是我想采访报道的对象,他身上有太多可圈可点的故事。尤其是对于GrowingIO大数据产品的设计和架构,他把自己对数据科学的严谨性和 ...
2016-03-11在BI界广泛流传着一个观点,不懂商业别做数据分析,可见商业理解对于数据分析的重要性。然后现实中,数据分析切合业务往往四处碰钉子,那么如何解决这个业界难题呢?数据分析人往往是用经典案例套业务的需求,或者等 ...
2016-03-11【干货】数据分析VS业务分析需求 在BI界广泛流传着一个观点,不懂商业别做数据分析,可见商业理解对于数据分析的重要性。然后现实中,数据分析切合业务往往四处碰钉子,那么如何解决这个业界难题呢?数据分析人 ...
2016-03-11KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12