移动应用如何埋点收集什么数据以便于统计分析? 问题一,其实这是个对于入门级产品的必备课程,通常在那个环节埋点可以转化为——对于一个app核心指标是什么?这些指标的优先级如何排序? 要回答这个问题, ...
2016-03-14产品新人如何入门:需求分析 产品新人入门系列,已经在大家的陪伴下走过了整整五期,前几期我们已经对产品经理的概念、思维习惯、软实力、硬实力对产品经理有了一定的了解,我们已经了解一个产品从无到有,需要 ...
2016-03-14对大数据分析有哪些流行误解? 大数据是一个新概念,大数据产生的背景是整个社会走向数字化,特别是社交网络和各种传感设备的发展。大数据分析拥有自身的特点,与计量经济学既有区别又有联系。当前对大数据的分 ...
2016-03-14数据如何指导产品设计 两年之前,那时我刚开始做产品,当需要做数据分析时,我总是一头雾水,完全不知道该如何下手。我想做好,我真的非常想做好,可我却真的不知道该怎么做。经过这两年大大小小项目的不断锤炼 ...
2016-03-14什么叫对数据敏感?怎样做数据分析? 今天讲一下我对数据的理解。 一、从数据维度做拆分,让目标更加落地 我做过近两年的电商运营,其中感触很深的一个点就是从数据的维度对目标做拆分。 天猫的双11刚刚 ...
2016-03-14电子商务数据分析三年工作总结:无细分,毋宁死 就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利 ...
2016-03-14大数据分析:六大诀窍解决大数据主要问题 每次在为一家企业搭建大数据平台的起步阶段,他们总是向我展示各种他们采用的各种前沿技术,还有他们视若珍宝的数据储备。但是毫不避讳地讲,我根本不想在这个阶 ...
2016-03-14在Twitter“玩”数据科学是怎样一种体验 关于如何成为一名数据科学家的讨论有很多很多。尽管这些探讨信息量都很大(我便是众多受益者之一),人们总是倾向于过分强调技术、工具和技巧的重要性。我以为,对于那些 ...
2016-03-13R语言中大型数据集的回归 众所周知,R语言是一个依赖于内存的软件,就是说一般情况下,数据集都会被整个地复制到内存之中再被处理。对于小型或者中型的数据集,这样处理当然没有什么问题。但是对于大型的数据集 ...
2016-03-12数据挖掘的六大步骤 数据挖掘(Data Mining),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。 此过程包括以下六个基 ...
2016-03-12统计名词和数据挖掘术语大盘点 一、数据挖掘术语 【算法】指的是用于实现某一数据挖掘技术-如分类树、辨识分析等等的特定程序。 【属性】也被称为“特性”、“变量”、或者从数据库的观点,是一个“域” ...
2016-03-12点击流数据中非结构化数据的挖掘 非结构化数据是大数据数据多样化的的一个特点,而点击流中的数据是多样化数据的一部分。依托强大的网站分析工具,可以得到最细粒度的原始数据(Raw Data),如果这些原始数据仅 ...
2016-03-12数据挖掘系列:用户画像之用户标签 用户画像(User Profile),作为大数据的根基,它完美地抽象出一个用户的信息全貌,为进一步精准、快速地分析用户行为习惯、消费习惯等重要信息,提供了足够的数据基础,奠定了 ...
2016-03-12电子商务数据分析师(数据挖掘) 14年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来, ...
2016-03-12朋友在使用Excel中遇到了难题,他想把数据区域中所有的奇数行设为相同的行高。当然,按住Ctrl键可以一一点选不连续的奇数行,但对于他的数千行数据来说,显然这是不明智的,而且稍有差池,前功尽弃。苦思冥想, ...
2016-03-11数据挖掘:如何寻找相关项 数据科学家需要具备专业领域知识并研究相应的算法以分析对应的问题,而数据挖掘是其必须掌握的重要技术。以帮助创建推动业务发展的相应大数据产品和大数据解决方案。EMC最近的一项调 ...
2016-03-11数据分析已经得到广泛的应用 数据分析是一个过程,它采用适当的分析方法将搜集而来的大量数据资料进行整合分析,再从中提取那些有用的数据信息进行研究与总结。这个过程也支持质量管理体系。数据分析非常实用, ...
2016-03-11中美数据分析大不同 张溪梦和他所创办的GrowingIO(北京易数科技有限公司)一直都是我想采访报道的对象,他身上有太多可圈可点的故事。尤其是对于GrowingIO大数据产品的设计和架构,他把自己对数据科学的严谨性和 ...
2016-03-11在BI界广泛流传着一个观点,不懂商业别做数据分析,可见商业理解对于数据分析的重要性。然后现实中,数据分析切合业务往往四处碰钉子,那么如何解决这个业界难题呢?数据分析人往往是用经典案例套业务的需求,或者等 ...
2016-03-11【干货】数据分析VS业务分析需求 在BI界广泛流传着一个观点,不懂商业别做数据分析,可见商业理解对于数据分析的重要性。然后现实中,数据分析切合业务往往四处碰钉子,那么如何解决这个业界难题呢?数据分析人 ...
2016-03-11在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10