京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【干货】数据分析VS业务分析需求
在BI界广泛流传着一个观点,不懂商业别做数据分析,可见商业理解对于数据分析的重要性。然后现实中,数据分析切合业务往往四处碰钉子,那么如何解决这个业界难题呢?数据分析人往往是用经典案例套业务的需求,或者等待业务需求,然后数据分析来实现,得出分析结论提供给业务使用。所以这当中需要多深业务功底才能做好分析,把分析价值呈现给业务,让他们用起来,这是一个难题,但也是企业最想解决的难题。
这里把引导放第一位,因为分析需求往往都是零散的、针对具体某一个问题的,所以如果要有系统化的、全面的分析需求,需要从BI角度进行一个分析总揽,既起到抛砖引玉的作用,同时也起到系统性引导业务分析的作用,使得BI与业务一线需求更为紧密。
所谓吃透分析需求,就是对用户的需求进行深入理解,一方面是看需求是否合理,二是自身对业务的学习、理解过程,三是对需求的全面思考。
案例一,由系统性分析框架,与业务需求一起完善BI,并用之产生足够价值。
大家都知道电商活动分析与日常运营分析差别比较大,故活动分析需要独立的分析框架专门服务每次的活动,达到市场目标达到或超过,且客户体验更高、运营成本更低的目的。
当BI人把活动分析框架搭建起来后,无论从商品供应链需求预测、客户细分准备精确营销、市场预测、流量/订单近实时监控等看似比较完美的分析服务体系建立起来后,与业务部门一碰撞,发现还是不能完全满足需求。例如财务部门可能要求监控同一天同一款商品不同价格的问题,因为有的时候,客户不同路径点击商品价格会不同。所以永远不要忽视一线部门对于业务需求的多样性,这些都是需要和业务部门充分交流互补有无的时候。
正常情况下,只要BI人能充分说明理由,业务部门不可能看着业务利益不去做的,除非BI人没有了解到业务执行的困难而妄自假想的方案。例如不同类型的活动,其商品销售分布规律是不同的,有的是3-7,2-8效应,有的甚至1-9效应,这些根据历史经验作为统计分析参数,意味着供应链预测的时候,活动商品根据销售目标准备的库存要达到足够的数量才行。
案例二,业务过来的需求,如何做得更好,让每一个分析都能真正发挥价值作用?BI不能成为IT开发者,你来需求我开发、我取数、分析,至于数据用的咋样,是否产生价值,是你自己的事。这种合作方式正在全面改进,BI价值泡沫正在回归真金白银的价值理念。所以对于业务提出的需求,要刨根问底,直到它真的对业务有帮助。
有朋友说,业务部门可能说,你别管,取数、统计就行了。其实这是可以改变的,因为业务部门也喜欢能做的更好,只要你懂业务,甚至比他们更有见地,别人为啥不听听你的建议呢?
在以前的甲方公司早期做BI的时候,当时业务解析能力还没那么牛,报表和数据分析体系还正在建立中,但也学习不少业务知识,需要逐步与业务磨合的时候,财务部门来了一个统计需求,结果一看,是一张上百个字段的超大报表,而且很明细,统计出来上万行,放EXCLE没法看。于是我问对方到底用这个表来干嘛呢?对方说不清楚,高层领导要的,想要看各省主要品类的销售情况,但不知道怎么看,估先这样都把数拿出来看吧。
我问领导用来干什么,或者什么场合用呢?对方说销售会议。我说这样吧,明细数据我给你,我再帮你统计一些图表,这样会议看数据会看得更轻松更清洗。销售会议,常常会自身同比,以及不同省份的增长对比,所以根据这个特点,我做了针对性统计。 后来反馈会议看数据确实更轻松,对会议有帮助,所以销售总监还想看库存与销售对比,看哪些地方抢了货却销售不出去的现象,但已经很大的补充作用了。
当数据分析走出业务分析的第一步,那么下一步,数据分析对决策有帮助、推动,甚至影响,就有了可能,我倡导的BI做为企业智囊团,谋士,就更进了一步。
数据分析要深入业务,需要做以下事情:
1。先虚心学习基础业务知识
2。建立分析体系,不完整的地方,有业务帮忙补充,BI的业务知识更为全面
3。了解业务的决策、执行困难,对实用性业务经验积累有巨大帮助
4。面对业务需求时,多想为什么,业务可能怎用这个统计或分析,他们拿着这些数据真的有用么?
OK,通过以上历练,你已经走过数据分析通往业务分析的桥梁,可以往战略战术性分析、计算、预测更进一步了,这样你的BI不但是“工具”,你做为BI人还可以做为谋士,成为决策、智能执行的推动或补充者,把事情做得更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01