京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘的六大步骤
数据挖掘(Data Mining),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。
此过程包括以下六个基本步骤:
1. 定义问题
2. 准备数据
3. 浏览数据
4. 生成模型
5. 浏览和验证模型
6. 部署和更新模型
该步骤包括分析业务需求,定义问题的范围,定义计算模型所使用的度量,以及定义数据挖掘项目的特定目标。 这些任务转换为下列问题:
·您在查找什么? 您要尝试找到什么类型的关系?
·您要尝试解决的问题是否反映了业务策略或流程?
·您要通过数据挖掘模型进行预测,还是仅仅查找受关注的模式和关联?
·您要尝试预测哪个结果或属性?
·您具有什么类型的数据以及每列中包含什么类型的信息? 或者如果有多个表,则表如何关联? 您是否需要执行任何清除、聚合或处理以使数据可用?
·数据如何分布? 数据是否具有季节性性质? 数据是否可以准确反映业务流程?
若要回答这些问题,可能必须进行数据可用性研究,必须调查业务用户对可用数据的需求。 如果数据不支持用户的需求,则还必须重新定义项目。
此外,还需要考虑如何将模型结果纳入用于度量业务进度的关键绩效指标 (KPI)。
2、准备数据
数据可以分散在公司的各个部门并以不同的格式存储,或者可能包含错误项或缺少项之类的不一致性。 例如,数据可能显示客户在产品推向市场之前购买该产品,或者客户在距离她家 2,000 英里的商店定期购物。
数据清除不仅仅是删除错误数据或插入缺失值,还包括查找数据中的隐含相关性、标识最准确的数据源并确定哪些列最适合用于分析。 例如,应当使用发货日期还是订购日期? 最佳销售影响因素是数量、总价格,还是打折价格? 不完整数据、错误数据和输入看似独立,但实际上都有很强的关联性,它们可以以意想不到的方式影响模型的结果。
3、浏览数据
浏览技术包括计算最小值和最大值,计算平均偏差和标准偏差,以及查看数据的分布。 例如,通过查看最大值、最小值和平均值,您可以确定数据并不能代表客户或业务流程,因此您必须获取更多均衡数据或查看您的预期结果所依据的假定。 标准偏差和其他分发值可以提供有关结果的稳定性和准确性的有用信息。 大型标准偏差可以指示添加更多数据可以帮助改进模型。 与标准分发偏差很大的数据可能已被扭曲,抑或准确反映了现实问题,但很难使模型适合数据。
4、生成模型
通过创建挖掘结构定义要使用的数据列。 将挖掘结构链接到数据源,但只有对挖掘结构进行处理后,该结构才会实际包含数据。
5、浏览和验证模型
在将模型部署到生产环境之前,您需要测试模型的性能。 此外,在生成模型时,您通常需要使用不同配置创建多个模型,并对所有这些模型进行测试,以便查看哪个模型为您的问题和数据生成最佳结果。
6、部署和更新模型
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16