大数据营销价值的10大来源 营销是一门学问吗?当然是,从人类有交易活动开始,营销便一直存在,且随着时代的变化而不断产生新的形式。进入大数据时代,市场营销也随之而慢慢进化。 在某些方面,当前的市场营销 ...
2016-03-17指点迷津的现代数据架构之道 企业要将大数据纳入到其核心企业数据架构,势必需要改动或购置大数据即服务技术。适合如今需求的现代数据架构应当包括以下这几个部分。 本文评析了现代数据架构所需要的几个部 ...
2016-03-17数据分析工作常见的七种错误及规避技巧 这在大多数情况下是正确的,但是对于数据科学家而言,犯错误能够帮助他们发现新的数据发展趋势和找到数据的更多模式。说到这儿,有一点很重要:要明白数据科学家有一个非常边 ...
2016-03-17初学者面试数据分析岗必要准备 因为在之前的回答里提到,建议希望成为数据分析师的知友们在学习过相关知识以后,做一份自己的数据报告,作为求职的敲门砖,展示已有能力。后来发现,我这个建议自以为干货, ...
2016-03-16现代数据架构之道:包括数据仓库与语义层等四个部分 鉴于许多企业组织在竭力采用易于使用的数据分析技术让大数据广泛可用,它们应考虑将部分功能外包到云端。如果选择一种大数据即服务解决方案,可以处理像hado ...
2016-03-16数据处理流程、分析方法和实战案例(二) 四、数据分析方法 接下来看一下互联网产品采用的数据分析方法。 对于互联网产品常用的用户消费分析来说,有四种: 第一种是多维事件的分析,分析维度之间 ...
2016-03-16数据处理流程、分析方法和实战案例(一) 一、大数据思维 在2011年、2012年大数据概念火了之后,可以说这几年许多传统企业也好,互联网企业也好,都把自己的业务给大数据靠一靠,并且提的比较多的大数据思维。 ...
2016-03-16产品经理学习数据分析,可以先看看这些建议 大数据时代的到来,对产品经理提出了更加严格的数据分析要求。一个懂数据分析的产品经理可以利用数据驱动产品设计优化,并提升客户体验。 那么,产品经理到底该关 ...
2016-03-16高效能数据分析的七个习惯 1.相比花哨算法,更重视分析的简单性 如果你都不能向一个5岁的小孩解释清楚,那么你将很难将你的产品卖给其他人。产品数据分析的重点不是分析,别误会,你还是需要分析,但是它 ...
2016-03-16高级的数据分析会涉及回归分析、方差分析和T检验等方法,不要看这些内容貌似跟日常工作毫无关系,其实往高处走,MBA的课程也是包含这些内容的,所以早学晚学都得学,干脆就提前了解吧,请查看以下内容。 ...
2016-03-16SPSS聚类分析是否需要对数据进行标准化处理? 为了从不同的角度反映一组数据的特征,我们往往追求更多的指标,这些数据单位不同,数量级也不同,这就需要我们在开始分析之前对数据进行标准化处理。聚类分析就经 ...
2016-03-15基于大数据算法的数据搜索,你有没有被看不起? 随着大数据的普及,数据信息被挖掘的程度在不断加深。当数据分析产品越来高级,人们对数据分析的需求也越来越大,个人数据在社会中的流传越来越多。 基 ...
2016-03-15你能正确评估数据吗? 在数据界,数据分析、机器学习或是数据科学的主要目的,就是建立一个能预测未来数据的系统。在普通情况中,你很难发现监督学习(例如分类)和无监督学习(例如聚类)之前的区别,你通常会 ...
2016-03-15让企业利用数据更高效 我们从很多数据指标中都可以看到组织内部正在发生的未来趋势。然而,更为常见的情况是,组织花费了很多时间和金钱在过于深入研究一个问题上,而这样的深入并无必要。设想一下:你真的需要 ...
2016-03-15数据工作别大意!四个小要点教你少走弯路 和数据相关的工作是很精确的,有时候甚至略显枯燥。在工作中大部分人都想多做些出彩的事,其实,少犯错误远比你想的重要,因为错误一旦发生,你就要耗费大量的工程时间 ...
2016-03-15来自田渊栋的知乎专栏,CDA数据分析师已获得作者授权 原文标题:AlphaGo的分析 最近我仔细看了下AlphaGo在《自然》杂志上发表的文章,写一些分析给大家分享。 AlphaGo这个系统主要由几个部分组成: 1.走棋网络(P ...
2016-03-15本文简介:数据科学家的常用工具与基本思路,数据分析师和数据科学家使用的工具综合概述,包括开源的技术平台相关工具、挖掘分析处理工具、其它常见工具等几百种,几十个大类,部分网址。为数据科学教育和知识分享 ...
2016-03-14产品经理与产品运营经理的区别? 虽然我跟朋友有着70%的相同工作,但是,还是有区别。不厌其烦解释N遍以后,我觉得,还是要好好跟大家伙解释一下这个。 对公司来说,职位仅仅是一个Title,公司需要做的 ...
2016-03-14如何通过统计分析工具做好app的数据分析和运营;如何通过统计分析工 每个女演员挑战武则天这个角色都绕不过“剃头”这道坎儿,作为对角色的牺牲、对艺术的奉献,每次女演员的“剃头”壮举也必被热炒,可是范冰冰 ...
2016-03-14用户在线行为学,从点击数据背后说起 在国内,消费者在线行为学领域找不到腕儿的原因有多种: 碍于实践及专注问题,传统行为学(消费者心理学)领域就没有出现专家; 互联网数据分析技术(GA/Ominture等) ...
2016-03-14DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09