
数据工作别大意!四个小要点教你少走弯路
和数据相关的工作是很精确的,有时候甚至略显枯燥。在工作中大部分人都想多做些出彩的事,其实,少犯错误远比你想的重要,因为错误一旦发生,你就要耗费大量的工程时间和资源来弥补错误。如果不小心,你的工程师们可能花费昂贵的时间来为销售团队解码数据,可能错过无数宝贵的营销机会。每当数据变得难使用或者理解时,你的团队决策速度会变慢,因此你的生意进展必将受到拖累。
不过,如果你从有用户就采用以下四个小要点,你一定可以避免走很多弯路。
1. 任命一个商业数据首席工程师
如果你能在团队中找到一个队数据分析真正有兴趣的工程师,你可以让他负责记录管理所有数据。这将为整个团队节省海量的时间。Porterfield 分享到,在Looker, 这样的一个商业数据首席工程师负责写能记录所有数据的脚本,从而方便大家总是能在同一个数据库内获取需要的信息。事实证明,这是个简单有效的方法,极大地提高了团队的工作效率。
2. 把数据放在开放的平台上
大家或该使用类似于Snowplow的开源平台,以能实时记录所有与产品相关的活动事件数据。它使用方便,有好的技术支援,可以放量使用。而最棒的一点,它能与你其余的数据框架很好的兼容。
3.选择一款合适的数据分析工具
市面上的大数据分析工具很多,有些着重于数据源的搜集,有些在数据分析,模型构建上能力最强,而有些则拥有最强的数据可视化展现方式。
4. 尽快将你的数据迁移到AWS Redshift或者其它大规模并行处理数据库(MPP)上
对于还处于早期的公司来说,类似于Redshift这种基于云端的MPP经常就是最好的选择。因为他们价格便宜,便于部署和管理,并且扩展性强。在理想状况下,你会希望从公司有记录之初就将你的事件与操作的数据写入亚马逊Redshift之中。“使用Redshift的好处在于这个平台便宜,迅速,可访问性高,”Porterfield说。并且,对于那些已经使用AWS服务的人来说,它(使用redshift)可以无缝接入你已有的架构中。你可以很容易的建设一个数据通道把数据直接传入这个系统中进行分析处理。“Redshift能让你灵活的写入巨量的颗粒状的数据而并不根据事件触发量的多少这样难以估计的参数来收费,”他说。“其它的服务会根据你储存事件的多少来收费,所以当越来越多的人使用你的产品时,越来越多的操作数据会被记录下来,这会导致最终的收费像火箭一样越升越高。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16