
数据工作别大意!四个小要点教你少走弯路
和数据相关的工作是很精确的,有时候甚至略显枯燥。在工作中大部分人都想多做些出彩的事,其实,少犯错误远比你想的重要,因为错误一旦发生,你就要耗费大量的工程时间和资源来弥补错误。如果不小心,你的工程师们可能花费昂贵的时间来为销售团队解码数据,可能错过无数宝贵的营销机会。每当数据变得难使用或者理解时,你的团队决策速度会变慢,因此你的生意进展必将受到拖累。
不过,如果你从有用户就采用以下四个小要点,你一定可以避免走很多弯路。
1. 任命一个商业数据首席工程师
如果你能在团队中找到一个队数据分析真正有兴趣的工程师,你可以让他负责记录管理所有数据。这将为整个团队节省海量的时间。Porterfield 分享到,在Looker, 这样的一个商业数据首席工程师负责写能记录所有数据的脚本,从而方便大家总是能在同一个数据库内获取需要的信息。事实证明,这是个简单有效的方法,极大地提高了团队的工作效率。
2. 把数据放在开放的平台上
大家或该使用类似于Snowplow的开源平台,以能实时记录所有与产品相关的活动事件数据。它使用方便,有好的技术支援,可以放量使用。而最棒的一点,它能与你其余的数据框架很好的兼容。
3.选择一款合适的数据分析工具
市面上的大数据分析工具很多,有些着重于数据源的搜集,有些在数据分析,模型构建上能力最强,而有些则拥有最强的数据可视化展现方式。
4. 尽快将你的数据迁移到AWS Redshift或者其它大规模并行处理数据库(MPP)上
对于还处于早期的公司来说,类似于Redshift这种基于云端的MPP经常就是最好的选择。因为他们价格便宜,便于部署和管理,并且扩展性强。在理想状况下,你会希望从公司有记录之初就将你的事件与操作的数据写入亚马逊Redshift之中。“使用Redshift的好处在于这个平台便宜,迅速,可访问性高,”Porterfield说。并且,对于那些已经使用AWS服务的人来说,它(使用redshift)可以无缝接入你已有的架构中。你可以很容易的建设一个数据通道把数据直接传入这个系统中进行分析处理。“Redshift能让你灵活的写入巨量的颗粒状的数据而并不根据事件触发量的多少这样难以估计的参数来收费,”他说。“其它的服务会根据你储存事件的多少来收费,所以当越来越多的人使用你的产品时,越来越多的操作数据会被记录下来,这会导致最终的收费像火箭一样越升越高。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07