
SPSS聚类分析是否需要对数据进行标准化处理?
为了从不同的角度反映一组数据的特征,我们往往追求更多的指标,这些数据单位不同,数量级也不同,这就需要我们在开始分析之前 对数据进行标准化处理。聚类分析就经常遇到,因为聚类就是利用多个指标来对样本进行分类的统计方法。
那么,SPSS聚类分析是否需要对数据进行标准化处理呢?经常有人提问。
首先,从聚类分析的概念上来判断。
聚类的要求是同一类的样本有较大的相似性,不同类的样本有较大的差异性。那如何才算是有相似性呢?这里经常用的就是判断点与点之间的距离是不是很近或者有相关性,只要是用距离来判断,就涉及到不同指标的运算,而量纲和数量级上的差异对距离的判断有很大的影响,为了消除这种影响,因此在聚类前需要对数据进行标准化处理。
有一种例外情况,如果采用相关系数来衡量个体的相似性,可以不做标准化处理,也留给大家讨论。
其次,我们从聚类操作对话框来看。
SPSS软件封装了3种聚类方法,TwoStep、Kmeans、Hierarchical。
先来看TwoStep聚类,如下图对话框。
SPSS明确指出需要对连续变量进行标准化操作,这个选项非常适合初学者,把数据质量的因素直接考虑进去,我们只需要按照提示一步步来完成即可。
再来看Kmeans聚类,如下图,
我们发现,SPSS并没有在这个过程中预装标准化操作,因此对于刚接触SPSS的人来说,就会造成一定的困惑或者麻烦,会认为完全按照spss的菜单项操作就可万无一失,从这一例子来看,SPSS初学者一定不能有这样的惰性思维,SPSS为我们提供便捷菜单操作的同时,我们仍然不能放弃基本的数据分析思维。
再看Hierarchical聚类过程,对话框如下图,
spss同样预装了数据标准化操作,SPSS菜单操作的便捷一目了然。
总结
讲到这里,大家对这个问题应该比较清晰。小兵再次提醒大家,不管SPSS是否在菜单选项中提供数据标准化处理,作为分析师,首先我们要有提前标准化的思维习惯,数据标准化也是数据预处理中的一项重要工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15