
如何研究学习一个机器学习算法?
机器学习算法的运行实验,会使你对于不同类型问题得出的实验结论,并对实验结论与算法参数两者的因果关系有一个直观认识。
在这篇文章中,你将会知道怎么研究学习一个机器学习算法。你将会学到5个简单步骤,你可以用来设计和完成你的第一个机器学习算法实验
你会发现机器学习实验不光是学者们的专利,你也可以;你也会知道实验是通往精通的必经之路,因为你可以从经验中学到因果关系的知识, 这是其它地方学不到的。
当研究一个机器学习算法的时候,你的目标是找到可得到好结果的机器算法行为,这些结果是可以推广到多个问题或者多个类型的问题上。
你通过对算法状态做系统研究来研究学习机器学习算法。这项工作通过设计和运行可控实验来完成
一旦你完成了一项实验,你可以对结论作出解释和提交。这些结论会让你得以管窥在算法变化中因果关系。这就是算法行为和你获得的结论间的关系。
在这一部分,我们将学到5个简单的步骤,你可以通过它来研究学习一个机器算法
选择一个你有疑问的算法
这个算法可能是你正在某个问题上应用的,或者你发现在其他环境中表现很好,将来你想使用
就实验的意图来说,使用现成的算法是有帮助的。这会给你一个底线:存在bug几率最低
自己实现一个算法可能是了解算法过程的一个好的方式,但是,实验期间,会引入额外的变量,比如bug,和大量必须为算法所做的微观决策
你必须有一个你试图寻找答案的研究问题。问题越明确,问题越有用
给出的示例问题包括以下几个方面:
KNN算法中,作为样本空间中的一部分的K值在增大时有什么影响?
在SVM算法中,选择不同的核函数在二分类问题上有什么影响 ?
在二分类问题中,逻辑回归上的不同参数的缩放有什么影响 ?
在随机森林模型中,在训练集上增加任意属性对在分类准确性上有什么影响?
针对算法,设计你想回答的问题。仔细考虑,然后列出5个逐渐演变的问题,并且深入推敲那个最精确的
从你的问题中挑选出关键元素然后组成你的实验内容。 例如,拿上面的示例问题为例:“二元分类问题中逻辑回归上的不同的参数缩放有什么影响?”
你从这个问题中挑出来用来设计实验的元素是:
属性缩放法:你可以采用像正态化、标准化,将某一属性提升至乘方、取对数等方法
二元分类问题:存在数值属性不同的二分类问题标准。需要准备多种问题,其中一些问题的规模是相同的(像电离层),然而其他一些问题的属性有不同的缩放值(像糖尿病问题)。
性能: 类似分类准确性的模型性能分数是需要的
花时间仔细挑选你问题中的组成元素以便为你的问题给出最佳解答。
完成你的实验
如果算法是随机的,你需要多次重复实验操作并且记录一个平均数和标准偏差
如果你试图寻找在不同实验(比如带有不同的参数)之间结果的差异,你可能想要使用一种统计工具来标明差异是否统计上显著的(就像学生的t检验)
一些工具像R和scikit-learn/SciPy完成这些类型的实验,但是你需要把它们组合在一起,并且为实验写脚本。其他工具像Weka带有图形用户界面,你所使用的工具不要影响问题和你实验设计的严密
总结你的实验结论。你可能想使用图表。单独呈现结果是不够的,他们只是数字。你必须将数字和问题联系起来,并且通过你的实验设计提取出它们的意义
对实验问题来说,实验结果又暗示着什么呢?
保持怀疑的态度。你的结论上有留什么样的漏洞和局限呢。不要逃避这一部分。知道局限性和知道实验结果一样重要
重复操作
继续研究你选择的算法。你甚至想要重复带有不同参数或者不同的测试数据集的同一个实验。你可能想要处理你试验中的局限性
不要只停留在一个算法上,开始建立知识体系和对算法的直觉
通过使用一些简单工具,提出好的问题,保持严谨和怀疑的态度,你对机器算法行为的理解很快就会到达世界级的水平
你也可以学习研究机器学习算法。
你不需要一个很高的学位,你不需要用研究的方式训练,你也不需要成为一名学者
对每个拥有计算机和浓厚兴趣的人来说,机器学习算法的系统研究学习是开放的。事实上,如果你主修机器学习,你一定会适应机器学习算法的系统研究。知识根本不会自己出来,你需要靠自己的经验去得到
当谈论你的发现的适用性时,你需要保持怀疑和谨慎
你不一定提出独一无二的问题。通过研究一般的问题,你也将会收获很多,例如根据一些一般的标准数据集总结出一个参数的普遍影响。你保不住会发现某些具有最优方法的常例的局限性甚至反例。
在本篇文章中,通过可控实验你知道了研究学习机器学习算法行为的重要性。你掌握了简单的5个步骤,你可以在一个机器学习算法上设计和运行你的第一项实验
采取行动。使用你在这篇博文中学到的步骤,来完成你的第一个机器学习实验。一旦你完成了一个,甚至是很小的一个,你将会获得自信,工具、能力来完成第二个以及更多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18