
R语言 apply函数家族详解
apply {base}
通过对数组或者矩阵的一个维度使用函数生成值得列表或者数组、向量。
apply(X, MARGIN, FUN, …)
X 阵列,包括矩阵
MARGIN 1表示矩阵行,2表示矩阵列,也可以是c(1,2)
例:
>xxx<-matrix(1:20,ncol=4)
>apply(xxx,1,mean)
[1] 8.5 9.5 10.5 11.5 12.5
>apply(xxx,2,mean)
[1] 3 8 13 18
>xxx
[,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20
lapply {base}
通过对x的每一个元素运用函数,生成一个与元素个数相同的值列表
lapply(X, FUN, …)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
例:
> x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
> x
$a
[1] 1 2 3 4 5 6 7 8 9 10
$beta
[1] 0.04978707 0.13533528 0.36787944 1.00000000 2.71828183 7.38905610
[7] 20.08553692
$logic
[1] TRUE FALSE FALSE TRUE
> lapply(x,mean)
$a
[1] 5.5
$beta
[1] 4.535125
$logic
[1] 0.5
sapply {base}
这是一个用户友好版本,是lapply函数的包装版。该函数返回值为向量、矩阵,如果simplify=”array”,且合适的情况下,将会通过simplify2array()函数转换为阵列。sapply(x, f, simplify=FALSE, USE.NAMES=FALSE)返回的值与lapply(x,f)是一致的。
sapply(X, FUN, …, simplify = TRUE, USE.NAMES = TRUE)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
simplify 逻辑值或者字符串,如果可以,结果应该被简化为向量、矩阵或者高维数组。必须是命名的,不能是简写。默认值是TRUE,若合适将会返回一个向量或者矩阵。如果simplify=”array”,结果将返回一个阵列。
USE.NAMES 逻辑值,如果为TRUE,且x没有被命名,则对x进行命名。
例:
> sapply(k, paste,USE.NAMES=FALSE,1:5,sep=”…”)
[,1] [,2] [,3]
[1,] “a…1” “b…1” “c…1”
[2,] “a…2” “b…2” “c…2”
[3,] “a…3” “b…3” “c…3”
[4,] “a…4” “b…4” “c…4”
[5,] “a…5” “b…5” “c…5”
> sapply(k, paste,USE.NAMES=TRUE,1:5,sep=”…”)
a b c
[1,] “a…1” “b…1” “c…1”
[2,] “a…2” “b…2” “c…2”
[3,] “a…3” “b…3” “c…3”
[4,] “a…4” “b…4” “c…4”
[5,] “a…5” “b…5” “c…5”
> sapply(k, paste,USE.NAMES=TRUE,1:5,sep=”…”,simplyfy=TRUE)
a b c
[1,] “a…1…TRUE” “b…1…TRUE” “c…1…TRUE”
[2,] “a…2…TRUE” “b…2…TRUE” “c…2…TRUE”
[3,] “a…3…TRUE” “b…3…TRUE” “c…3…TRUE”
[4,] “a…4…TRUE” “b…4…TRUE” “c…4…TRUE”
[5,] “a…5…TRUE” “b…5…TRUE” “c…5…TRUE”
> sapply(k, paste,simplify=TRUE,USE.NAMES=TRUE,1:5,sep=”…”)
a b c
[1,] “a…1” “b…1” “c…1”
[2,] “a…2” “b…2” “c…2”
[3,] “a…3” “b…3” “c…3”
[4,] “a…4” “b…4” “c…4”
[5,] “a…5” “b…5” “c…5”
> sapply(k, paste,simplify=FALSE,USE.NAMES=TRUE,1:5,sep=”…”)
$a
[1] “a…1” “a…2” “a…3” “a…4” “a…5”
$b
[1] “b…1” “b…2” “b…3” “b…4” “b…5”
$c
[1] “c…1” “c…2” “c…3” “c…4” “c…5”
vapply {base}
vapply类似于sapply函数,但是它的返回值有预定义类型,所以它使用起来会更加安全,有的时候会更快
在vapply函数中总是会进行简化,vapply会检测FUN的所有值是否与FUN.VALUE兼容,以使他们具有相同的长度和类型。类型顺序:逻辑<</span>整型<</span>实数<</span>复数
vapply(X, FUN, FUN.VALUE, …, USE.NAMES = TRUE)
X表示一个向量或者表达式对象,其余对象将被通过as.list强制转换为list
simplify 逻辑值或者字符串,如果可以,结果应该被简化为向量、矩阵或者高维数组。必须是命名的,不能是简写。默认值是TRUE,若合适将会返回一个向量或者矩阵。如果simplify=”array”,结果将返回一个阵列。
USE.NAMES 逻辑值,如果为TRUE,且x没有被命名,则对x进行命名。
FUN.VALUE 一个通用型向量,FUN函数返回值得模板
例:
> x<-data.frame(a=rnorm(4,4,4),b=rnorm(4,5,3),c=rnorm(4,5,3))
> vapply(x,mean,c(c=0))
a b c
1.8329043 6.0442858 -0.1437202
> k<-function(x)
+ {
+ list(mean(x),sd(x))
+ }
> vapply(x,k,c(c=0))
错误于vapply(x, k, c(c = 0)) : 值的长度必需为1,
但FUN(X[[1]])结果的长度却是2
> vapply(x,k,c(c=0,b=0))
错误于vapply(x, k, c(c = 0, b = 0)) : 值的种类必需是‘double’,
但FUN(X[[1]])结果的种类却是‘list’
> vapply(x,k,c(list(c=0,b=0)))
a b c
c 1.832904 6.044286 -0.1437202
b 1.257834 1.940433 3.649194
tapply {base}
对不规则阵列使用向量,即对一组非空值按照一组确定因子进行相应计算
tapply(X, INDEX, FUN, …, simplify = TRUE)
x 一个原子向量,典型的是一个向量
INDEX 因子列表,和x长度一样,元素将被通过as.factor强制转换为因子
simplify 若为FALSE,tapply将以列表形式返回阵列。若为TRUE,FUN则直接返回数值
例:
> height <- c(174, 165, 180, 171, 160)
> sex<-c(“F”,”F”,”M”,”F”,”M”)
> tapply(height, sex, mean)
F M
170 170
eapply {base}
eapply函数通过对environment中命名值进行FUN计算后返回一个列表值,用户可以请求所有使用过的命名对象。
eapply(env, FUN, …, all.names = FALSE, USE.NAMES = TRUE)
env 将被使用的环境
all.names 逻辑值,指示是否对所有值使用该函数
USE.NAMES 逻辑值,指示返回的列表结果是否包含命名
例:
> require(stats)
>
> env <- new.env(hash = FALSE) # so the order is fixed
> env$a <- 1:10
> env$beta <- exp(-3:3)
> env$logic <- c(TRUE, FALSE, FALSE, TRUE)
> # what have we there?
> utils::ls.str(env)
a : int [1:10] 1 2 3 4 5 6 7 8 9 10
beta : num [1:7] 0.0498 0.1353 0.3679 1 2.7183 …
logic : logi [1:4] TRUE FALSE FALSE TRUE
>
> # compute the mean for each list element
> eapply(env, mean)
$logic
[1] 0.5
$beta
[1] 4.535125
$a
[1] 5.5
> unlist(eapply(env, mean, USE.NAMES = FALSE))
[1] 0.500000 4.535125 5.500000
>
> # median and quartiles for each element (making use of “…” passing):
> eapply(env, quantile, probs = 1:3/4)
$logic
25% 50% 75%
0.0 0.5 1.0
$beta
25% 50% 75%
0.2516074 1.0000000 5.0536690
$a
25% 50% 75%
3.25 5.50 7.75
> eapply(env, quantile)
$logic
0% 25% 50% 75% 100%
0.0 0.0 0.5 1.0 1.0
$beta
0% 25% 50% 75% 100%
0.04978707 0.25160736 1.00000000 5.05366896 20.08553692
$a
0% 25% 50% 75% 100%
1.00 3.25 5.50 7.75 10.00
mapply {base}
mapply是sapply的多变量版本。将对…中的每个参数运行FUN函数,如有必要,参数将被循环。
mapply(FUN, …, MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE)
MoreArgs FUN函数的其他参数列表
SIMPLIFY 逻辑或者字符串,可以减少结果成为一个向量、矩阵或者更高维阵列,详见sapply的simplify参数
USE.NAMES 逻辑值,如果第一个参数…已被命名,将使用这个字符向量作为名字
例:
> mapply(rep, 1:4, 4:1)
[[1]]
[1] 1 1 1 1
[[2]]
[1] 2 2 2
[[3]]
[1] 3 3
[[4]]
[1] 4
rapply {base}
rapply是lapply的递归版本
rapply(X, FUN, classes = “ANY”, deflt = NULL, how = c(“unlist”, “replace”, “list”), …)
X 一个列表
classes 关于类名的字符向量,或者为any时则匹配任何类
deflt 默认结果,如果使用了how=”replace”,则不能使用
how 字符串匹配三种可能结果
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01