
企业需要什么样的数据科学家
大数据是当今最热门的IT概念,存储、处理、分析大数据的解决方案都层出不穷,Hadoop更是让企业低成本处理大数据成为可能,但是大数据最大的问题不是工具,而是人才短缺。数据科学家DJ Patil曾经在LinkedIn、Skype、eBay和Paypal等公司就职,对企业需要什么样的数据科学家,以及数据科学家对今日企业之创新和竞争力的意义都有深刻见解。
互联网企业的秘密武器
LinkedIn数据分析人才岗位的历史增长 数据来源:LinkedIn
Patil认为,最先成功挖掘数据价值的无疑是在线零售商,亚马逊是这个领域的带头羊,高人一等的商品推荐技术已经成为亚马逊的核心竞争力。此外社交网站的成功也非常依赖数据科学家。例如Facebook通过复杂的追踪和分析技术,能判断出一个用户最少需要多少个Facebook好友才有可能成为长期用户。于是Facebook在其产品设计中,尽量让用户在一个可以接受的时间跨度内找到足够多的联系人。
在线视频租赁公司Netflix的数据科学家们可以判断出,当一个客户在租看多少部电影后将有可能发展成长期客户。Paypal和美国运通则依赖数据分析来进行欺诈检测,减少信用欺诈。
网络游戏公司Zynga通过分析用户数据来识别一个游戏让用户沉迷的引爆点。通过分析用户在一个新游戏中头几天搭建的房屋数量、杀死的怪物数量,Zynga能判断出该用户成为长期用户的几率。Zynga反过来也会调整产品设计,让用户更容易完成那些会导致他们欲罢不能的“战绩”。
企业需要什么样的数据科学家
企业需要的数据人才大致分为几类,主要包括产品和市场分析、安全和风险分析以及商业智能三大领域。产品分析是指通过算法来测试新产品的有效性,是一个相对较新的领域。在安全和风险分析方面,数据科学家们知道需要收集哪些数据、如何进行快速分析,并最终通过分析信息来有效遏制网络入侵或抓住网络罪犯。
Patil认为,一位优秀的企业数据科学家需要具备的基本素质包括:技术经验、好奇心、会讲故事等。
但最根本的问题依然是人才短缺,一将难求:“我所工作过的每一家企业都为招聘合适的数据人才而头疼,通常面临两类选择,要么招募拥有多领域经验和知识结构的数据分析专家,要么从大学招聘天资不错的毕业生,让他们在实习中成长。”Patil警告那些将数据分析团队等闲视之的企业领导:“数据分析是一项高度创造性的工作,数据科学家团队的成员之间需要沟通融洽、相互信任,让一堆天才之间默契合作并不容易,不过这也是挑战和乐趣所在。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29