京公网安备 11010802034615号
经营许可证编号:京B2-20210330
朴素贝叶斯分类和预测算法的原理及实现
决策树和朴素贝叶斯是最常用的两种分类算法,本篇文章介绍朴素贝叶斯算法。贝叶斯定理是以英国数学家贝叶斯命名,用来解决两个条件概率之间的关系问题。简单的说就是在已知P(A|B)时如何获得P(B|A)的概率。朴素贝叶斯(Naive Bayes)假设特征P(A)在特定结果P(B)下是独立的。
在开始介绍贝叶斯之前,先简单介绍下概率的基础知识。概率是某一结果出现的可能性。例如,抛一枚匀质硬币,正面向上的可能性多大?概率值是一个0-1之间的数字,用来衡量一个事件发生可能性的大小。概率值越接近1,事件发生的可能性越大,概率值越接近0,事件越不可能发生。我们日常生活中听到最多的是天气预报中的降水概率。概率的表示方法叫维恩图。下面我们通过维恩图来说明贝叶斯公式中常见的几个概率。
在维恩图中:
S:S是样本空间,是所有可能事件的总和。
P(A):是样本空间S中A事件发生的概率,维恩图中绿色的部分。
P(B):是样本空间S中B事件发生的概率,维恩图中蓝色的部分。
P(A∩B):是样本空间S中A事件和B事件同时发生的概率,也就是A和B相交的区域。
P(A|B):是条件概率,是B事件已经发生时A事件发生的概率。
对于条件概率,还有一种更清晰的表示方式叫概率树。下面的概率树表示了条件概率P(A|B)。与维恩图中的P(A∩B)相比,可以发现两者明显的区别。P(A∩B)是事件A和事件B同时发现的情况,因此是两者相交区域的概率。而事件概率P(A|B)是事件B发生时事件A发生的概率。这里有一个先决条件就是P(B)要首先发生。
因为条件概率P(A|B)是在事件B已经发生的情况下,事件A发生的概率,因此P(A|B)可以表示为事件A与B的交集与事件B的比率。
该公式还可以转换为以下形式,以便我们下面进行贝叶斯公式计算时使用。
贝叶斯算法通过已知的P(A|B),P(A),和P(B)三个概率计算P(B|A)发生的概率。假设我们现在已知P(A|B),P(A)和P(B)三个概率,如何计算P(B|A)呢?通过前面的概率树及P(A|B)的概率可知,P(B|A)的概率是在事件A发生的前提下事件B发生的概率,因此P(B|A)可以表示为事件B与事件A的交集与事件A的比率。
该公式同样可以转化为以下形式:
到这一步,我们只需要证明P(A∩B)= P(B∩A)就可以证明在已知P(A|B)的情况下可以通过计算获得P(B|A)的概率。我们将概率树转化为下面的概率表,分别列出P(A|B),P(B|A),P(A),和P(B)的概率。
通过计算可以证明P(A|B)*P(B)和P(B|A)*P(A)最后求得的结果是概率表中的同一个区域的值,因此:
我们通过P(A∩B)= P(B∩A)证明了在已知P(A|B),P(A),和P(B)三个概率的情况下可以计算出P(B|A)发生的概率。整个推导和计算过程可以说得通。但从统计学的角度来看,P(A|B)和P(B|A)两个条件概率之间存在怎样的关系呢?我们从贝叶斯推断里可以找到答案。
贝叶斯推断可以说明贝叶斯定理中两个条件概率之间的关系。换句话说就是我们为什么可以通过P(A|B),P(A),和P(B)三个概率计算出P(B|A)发生的概率。
在贝叶斯推断中,每一种概率都有一个特定的名字:
P(B)是”先验概率”(Prior probability)。
P(A)是”先验概率”(Prior probability),也作标准化常量(normalized constant)。
P(A|B)是已知B发生后A的条件概率,叫做似然函数(likelihood)。
P(B|A)是已知A发生后B的条件概率,是我们要求的值,叫做后验概率。
P(A|B)/P(A)是调整因子,也被称作标准似然度(standardised likelihood)。
贝叶斯推断中有几个关键的概念需要说明下:
第一个是先验概率,先验概率是指我们主观通过事件发生次数对概率的判断。
第二个是似然函数,似然函数是对某件事发生可能性的判断,与条件概率正好相反。通过事件已经发生的概率推算事件可能性的概率。
维基百科中对似然函数与概率的解释:
概率:是给定某一参数值,求某一结果的可能性。
例如,抛一枚匀质硬币,抛10次,6次正面向上的可能性多大?
似然函数:给定某一结果,求某一参数值的可能性。
例如,抛一枚硬币,抛10次,结果是6次正面向上,其是匀质的可能性多大?
第三个是调整因子:调整因子是似然函数与先验概率的比值,这个比值相当于一个权重,用来调整后验概率的值,使后验概率更接近真实概率。调整因子有三种情况,大于1,等于1和小于1。
因此,贝叶斯推断可以理解为通过先验概率和调整因子来获得后验概率。其中调整因子是根据事件已经发生的概率推断事件可能发生的概率(通过硬币正面出现的次数来推断硬币均匀的可能性),并与已经发生的先验概率(硬币正面出现的概率)的比值。通过这个比值调整先验概率来获得后验概率。
后验概率 = 先验概率 x 调整因子
贝叶斯分类器比较有名的实验场景是对垃圾邮件进行分类和过滤。这里我们简单介绍下通过贝叶斯算法过滤垃圾邮件的过程。贝叶斯分类器需要依赖历史数据进行学习,假定包含关键词”中奖”的就算作垃圾邮件。我们先经过人工筛选找出10封邮件,并对包含关键词”中奖“的邮件标注为垃圾邮件(Spam)。
我们将普通邮件和垃圾邮件中出现“中奖”关键词的频率进行汇总,分别记录普通邮件中出现和未出现该关键词的次数和垃圾邮件中出现和未出现该关键词的次数,并分别进行汇总。
根据频率表计算出贝叶斯算法中所需的关键概率值,这里我们已知普通邮件的概率P(Email),垃圾邮件的概率P(Spam),出现关键词的概率P(Yes),未出现关键词的概率P(No),以及垃圾邮件出现关键词的概率P(Yes|Spam)。
按照贝叶斯公式,已知P(B|A),P(A)和P(B)的概率。求P(A|B)的概率。
我们将贝叶斯公式套用到垃圾邮件分类中,已知垃圾邮件中出现“中奖”关键词的概率,和垃圾邮件及“中奖”关键词的概率,求出现“中奖”关键词是垃圾邮件的概率。
P(A)=P(垃圾邮件)=0.40
P(B)=P(出现关键词)=0.40
P(B|A)=P(出现关键词|垃圾邮件)=0.75
P(A|B)=P(垃圾邮件|出现关键词)
除了垃圾邮件分类,再来看一个病情预测的实例。通过历史数据已知几类疾病的病症及 患病人职业。那么如果新来的一位打喷嚏的建筑工人,如何通过贝叶斯算法通过历史数据来预测这位打喷嚏的建筑工人患感冒的概率呢?以下是6位历史病例的数据。
根据疾病的种类,我们分别对不同病症和不同职业患病的频率进行了统计。以下分别是不同症状与对应疾病发生的频率表,和不同职业与所对应疾病发生的频率表。
根据两个频率表分布计算出贝叶斯算法中所需的概率值,这里我们已知每种疾病的概率,不同职业和不同症状的概率,以及患感冒后打喷嚏和职业为建筑工人的概率。
按照贝叶斯公式,已知P(B*C|A),P(A)和P(B*C)的概率。求P(A|B*C)的概率。
我们假设护士和打喷嚏这两个特征在感冒这个结果下是独立的,因此,上面的贝叶斯公式可以转化为朴素贝叶斯公式:
我们将贝叶斯公式套用到疾病预测中:
P(A)=P(感冒)=0.5
P(B)=P(打喷嚏)=0.5
P(C)=P(建筑工人)=0.33
P(B|A)= P(打喷嚏|感冒)=0.67
P(C|A)= P(建筑工人|感冒)=0.33
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15