使用R语言实现数据分段
今天跟大家讲讲我工作中用到的数据分段,数据分段一般在什么地方会使用到呢?评分。之前写过一篇《实战: RFM》模型使用,那篇文章就详细介绍了CRM(客户关系管理)分析中关于RFM的应用。应用中就提到如何对R(最近一次消费距当前的时间间隔)、F(时间段内的消费频次)和M(时间段内的消费总额)指标进行分段,形成三种得分指标,最后根据得分指标计算出每个用户的总得分,从而可以计算用户的价值高低。
本文与之前提到的文章不同之处在于脚本的更改,使脚本更具灵活性。《实战: RFM模型使用》文中对R、F和M分段使用for循环,而且需要对每一个指标做循环,如果某个数据框的字段非常多,这样用for循环就显得非常麻烦。所以就有必要写一段更灵活的连续变量分段操作的R脚本。这里用案例说明一下数据分段操作:
#随机参数一列会员的消费总额
set.seed(1234)
Money <- c(round(runif(n = 5000, min = 56, max = 9143)), round(rnorm(n = 5000, mean = 892, sd = 23)))
#使用《实战: RFM模型使用》的分段方法,这里分成10段,尽量保证每段中的数据量大致相当
library(Hmisc)
#使用cut2()函数对数据进行分段
M_X <- cut2(x = Money, g = 10, onlycuts = TRUE)
#使用for循环将每一段范围值设定一个评分,即1:10分
M_score <- 0
for(i in 1:10) {
M_score[Money >= M_X[i] & Money < M_X[i+1]] = i
#由于范围Money < M_X[i+1]不包含最后一个值,故另外计算
M_score[Money == M_X[11]] = 10
}
table(M_score)
通过上面的方法,可以将连续型数据分成n段,从案例返回的结果可知,10段中的样本量基本相当,可以视作分段成功。下面再看看自定义函数实现的分段:
#自定义得分函数,x为目标向量,g为所需分段数量
Score_function <- function(x,g = 10){
require(Hmisc)
#计算分段的切割点
cuts <- cut2(x,g = g, onlycuts = TRUE)
#将所需结果存放在res数据框中
res <- data.frame(x=x, cut = cut2(x, cuts = cuts),score = as.numeric(cut2(x, cuts = cuts)))
#这里返回res数据框中的评分字段
return(res[,'score'])
}
M_score2 <- Score_function(x = Money, g = 10)
table(M_score2)
同样,分段的结果与《实战: RFM模型使用》脚本的结果一致,这里说一下自定义函数的优势:
1)可以灵活的更改分组数量,即g参数
2)不需要循环,速度得到提升
3)可以结合sapply()函数,应用于大型数据框(高维数据),从而避免对每个字段都计算一次for循环
下面创建一个数据框,来验收一下自定义函数的效果:
set.seed(1234)
x1 <- round(rnorm(n = 5000, mean = 125, sd = 30))
x2 <- round(runif(n = 5000, min = 10, max = 100))
x3 <- round(runif(n = 5000, min = 100, max = 1000))
x4 <- round(rnorm(n = 5000, mean = 100, sd = 10))
df <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4)
#结合sapply()函数
df2 <- sapply(df, Score_function)
head(df2)
df2 <- as.data.frame(df2)
table(df2$x1);table(df2$x2);table(df2$x3);table(df2$x4)
如果使用《实战: RFM模型使用》的方法,4个变量需要单独拿出来做4次for循环。如果你觉得还可以再套一个循环,这样就可以不用单独4次for循环了,问题是这样做会大大降低计算效率,影响速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03