京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于沃尔玛、华润万家、百佳等零售大超市而言,每天都有很多客户通过会员卡进行购买,不断积累了很多销售数据,如何利用这些行业数据,从数据中挖掘金矿,很值得每个商家去思考。尽管目前零售商有不少的IT系统去支撑企业常规的分析(如销售量、销售额、热销SKU等),但实际上还是未能从数据角度深入挖掘客户的价值,仅仅从经营分析的角度来满足了常规分析工作。
本文从个人的角度去谈一下如何使用数据挖掘帮助零售商提升生意,让数据真正地去指导企业经营,最大限度地发挥数据提供商业决策的作用。
第一、开展会员制能够帮助企业采集更多会员数据,更有利于开展数据挖掘的工作,同时也有利于培养客户忠诚度。
在实施会员制的时候,必须要特别注意两个关键信息的采集:会员卡ID、客户联系号码或者邮箱,因为这两个关键信息对信息采集及后期的精准营销有很大的帮助作用。而微信、微博等社交媒体的横行,若零售商能够通过相关活动让客户关注企业的微信、微博,对培养客户忠诚度也是有很大的帮助。
会员制有助于为企业培养众多忠实的顾客,建立起一个长期稳定的市场,提高企业的竞争力。通过会员制,可以有效稳定老客户,同时开发新顾客。因为零售商给会员提供的是优惠的价格,对新顾客吸引力很大,同时大部分会员卡是可以外借的,也给新客户提供了机会,大大增加其成为会员的可能性。
会员制营销能够促进企业与顾客双向交流。顾客成为会员后,通常能定期收到商家有关新商品的信息并了解商品信息和商家动态,有针对性地选购商品。除此之外,企业能够及时了解消费者需求的变化,以及他们对产品、服务等方面的意见,为改进企业的营销模式提供了依据。
第二、开展零售商的数据挖掘项目,必须要重点提供以下几个表的关键信息:
·销售表:卡号、销售店ID、销售日期、产品名称、产品价格、销售数量、销售金额、折扣等信息。
·产品表:产品ID、产品名称、建议零售价、实际销售价、一级类别、二级类别、三级类别、四级类别、品牌等信息。
·客户表:卡号、发卡店ID、城市、号码、邮箱、企业或个人标识、企业名称、所在行业、地址等。
·零售店表:店ID、店名、所属城市、店等级等。
其中销售表、产品表、客户表比较重要,而产品表梳理对数据分析及数据挖掘团队而言,是做好项目的关键,必须要耗费大量的时间。
第三、与零售商明确 数据挖掘 目的,能够让分析团队与零售商之间获得更大的信任,同时有利于项目的顺利开展。
成熟的分析团队,比较关注零售商的商业出发点,从客户商业价值出发,抓住客户关注点,一点一点地做好相应的落地分析工作。
客户最常见想让数据帮助其解答的几大问题:
·如何让活跃的客户购买更多的产品,最大程度地释放其价值?
·如何唤醒沉默客户,让其转化为活跃客户?
·哪些客户是我的重点客户群?其有什么样的特征?
·哪些重点客户流失了?为什么流失?后期怎样开展挽留手段?
……
对于零售数据而言,必须要深入零售行业两大客户群:企业及个人。企业客户的特征和个人客户的特征有很大的区别。
企业特征主要表现:采购量比较大,经常进行团购或批发,销售量和销售额都比较大,为零售商的重点客户群。尽管数量不多,但是却贡献了零售商的60%以上的销售额。而企业的行为经常有:超大型采购、中型采购、一般采购。对企业数据挖掘,需要深入了解企业的所属行业、采购额度、采购规律、采购产品偏好、是否流失、流失的原因调查等信息,有助于帮助零售商开展相应的营销策略。
对于个人,则需要关注哪些是活跃客户、哪些是新增客户、哪些是沉默客户、客户价值是怎样的、哪些节日是重点高峰期、偏好的产品是哪些等等,这些有助于零售商开展销售、备货等工作。
第五、结合5W1H分析法开展零售分析与挖掘。
·What:销售情况怎么样?有多少用户?来了多少次?每次消费多少钱?买了什么东西…….
·Where:哪些门店销售最好?为什么呢?(交通、地区等) …….
·When:哪个月份销售得最好?哪个节日是销售高峰期…….
·Who:是哪些客户?有什么样的特征?偏好买哪些产品?产品规格是怎么样的…….
·Why:为什么买哪些产品?为什么买那么多?会不会继续购买…….
·How:怎样提高客户重购?怎样唤醒客户?怎么进行交叉销售?怎样帮助铺货……
第六、协助零售商开展营销活动设计、 营销 活动执行、营销评估与优化。
因为数据挖掘是一个闭环的流程,不是撰写挖掘报告、输出营销客户名单就是项目成功的,必须协助零售商开展相应的营销设计、营销活动执行、营销评估及优化工作。从而确保数据挖掘有效落地,为客户真实产生商业价值,扩大生意规模。
营销活动设计常有:优惠打折、派发试用装、赠送礼品、多倍积分等,可以通过不同的细分客户群有针对性地开展不同的营销活动,并计算不同群体及不同活动的投入产出比,便于后期不断优化数据挖掘规则。
第七、关键成果固化IT系统,实现数据挖掘成果固化落地。
对于零售商而言,数据挖掘是个不大不小的投入,对于关键的成果输出,总希望能够把成果规则进行IT固化,实现自动代替手工操作,这个时候经常需要搭建一个成果固化模块或系统,让数据挖掘能够最大限度帮助企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21