京公网安备 11010802034615号
经营许可证编号:京B2-20210330
针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。
1.领会:考生能够领会了解规定的知识点,并能够了解规定知识点的内涵与外延,了 解其内容要点和它们之间的区别与联系,并能做出正确的阐述、解释和说明。
2.熟知:考生须掌握知识的要点,并能够正确理解和记忆相关理论方法,能够根据不 同要求,做出逻辑严密的解释、说明和阐述。此部分为考试的重点部分。
3.应用:考生须学会将知识点落地实践,并能够结合相关工具进行商业应用,能够根 据具体要求,给出问题的具体实施流程和策略。
a. Spark 基础理论(2%)
b. Spark RDD 基本概念及常用操作(3%)
c. Spark 流式计算框架 Spark Streaming、Structured Streaming(5%)
d. Spark 交互式数据查询框架 Spark SQL(5%)
e. Spark 机器学习算法库 Spark MLlib 基本使用方法(15%)
f. Spark 图计算框架 GraphX(5%)
c. 利用 Sqoop 进行数据传输(1%)
d. 利用 Spark SQL 进行数据读取(2%)
e. 利用 Spark MLlib 进行机器学习建模(8%)
f. 利用 Python 进行建模结果数据可视化(1%)
【领会】 大数据技术诞生技术背景 大数据技术实际应用 分布式处理技术概念
数据分析和数据挖掘的概念 【熟知】 明确数据分析的目标和意义 明确分布式技术在进行海量数据处理时起到的关键作用 数据分析方法与数据挖掘方法的区别和联系 明确数据分析流程中不同软件工具的作用 常用描述性统计方法 常用数据挖掘方法
【领会】 Python 语言的特点、语法、应用场景
【领会】
【熟知】
SELECT…FROM 语句
【应用】
使用列值进行计算、算术运算符、使用函数、列别名、嵌套 SELECT 语句、WHERE 语句、group by 语句、集合运算、多表连接、内连接、外连接、笛卡尔积连接、order by 语句、 抽样查询、视图。
【领会】
Sqoop 是一个数据转储工具,它能够将 Hadoop HDFS 中的数据转储到关系型数据库中,也能将关系型数据库中的数据转储到 HDFS 中。
【熟知】
Sqoop 链接数据库需要 JDBC 的支持
【应用】
Sqoop 的安装方法
【领会】
大数据专业是一个跨学科的领域,涵盖了数学、统计学、计算机科学与技术等多个学科。随着数据在各个行业中的重要性日益增加,大数据专业的学习内容也变得愈发丰富和复杂。本文将详细介绍大数据专业的核心课程和学习内容,帮助大家更好地了解这个领域。
数据采集与处理 学生需要掌握数据采集、处理和呈现的技术,熟练使用多种软件进行数据分析和可视化。例如,学生可以使用Python编写脚本从网络上抓取数据,并使用Pandas进行数据清洗和分析。通过这些实践,学生可以提升处理大规模数据和挖掘价值的能力。
编程语言 掌握编程语言如Java、Python、Scala等在大数据领域的应用是非常重要的。这些编程语言在大数据处理、机器学习和数据分析中有广泛的应用。例如,学生可以使用Python编写机器学习算法,使用Scala开发Spark应用程序。
跨学科知识 大数据专业是一个交叉学科,涉及统计学、数学、计算机科学等多个领域。学生需要具备较强的理论分析和解决实际问题的能力。例如,学生在学习数据挖掘时,需要结合统计学和计算机科学的知识,设计和实现高效的数据挖掘算法。
通过这些课程的学习,学生可以提升处理大规模数据和挖掘价值的能力,为未来从事数据相关职业做好准备。值得一提的是,获得CDA(Certified Data Analyst)认证可以显著提升学生在就业市场的竞争力。CDA认证是行业内广泛认可的技能认证,能够证明持有者在数据分析领域具备扎实的理论基础和实践能力。
CDA官网链接:https://www.cdaglobal.com
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。
它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。
扫码加入CDA小程序,与圈内考生一同学习、交流、进步!

总之,大数据专业的学习内容丰富而广泛,涵盖了从基础理论到实际应用的各个方面。通过系统的学习和实践,学生不仅可以掌握大数据技术的核心知识,还能培养解决实际问题的能力,为未来的职业发展打下坚实的基础。希望这篇文章能帮助大家更好地了解大数据专业的学习内容,并激发对这一领域的兴趣和热情。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03