利用好电商平台 构建农业大数据体系 农业部市场与经济信息司副司长王小兵日前表示,目前我国农业电商发展迅速,但瓶颈和痛点日益凸显,未来要培育多种主体,利用好电商平台大数据,调节农产品生产和消 ...
2015-11-28成为一名合格的互联网分析师必须的条件 先反推来看,分析师到底是干什么用的? 个人理解,分析的目的和价值,是为了决策。 决策又分很多,是发掘市场服务投资,还是分析对手竞争策略,抑 ...
2015-11-28交互设计师必修课:数据分析的原则 面对一大堆看似杂乱的数据,如何进行信息提取与数据加工,从中获取自己想要的信息,并应用这些信息,有理有据的进行需求的讨论、最终设计决策的推进,这是每一个交互 ...
2015-11-28给应聘分析/数据科学公司的校园新生应聘者的一些建议 我很庆幸(幸运)我的记忆还能回到2011年12月的第一周,对我来说,那是非同寻常的一周,也是至关重要的一周。那是我第一次为了工作面试的机会出现在 ...
2015-11-28那些年,我们都曾误会的数据 大家现在几乎天天都在谈大数据,对于大数据,我们该如何运用呢? 基于我对大数据的理解,我简单的从几个方面来分享一下,我认为大数据不仅仅是数据规模大,还应从观念、技术 ...
2015-11-28数据挖掘方法案例介绍 分类是用于识别什么样的事务属于哪一类的方法,可用于分类的算法有决策树、bayes分类、神经网络、支持向量机等等。 决策树 例1 一个自行车厂商想要通过广告宣传 ...
2015-11-28逻辑回归与决策树在分类上的一些区别 营销预测模型的目标变量很多为一种状态或类型,如客户“买”还是“不买”、客户选择上网方式为 “宽带”还是“拨号”、营销战通道是邮件、电话、还是网络。我们把这 ...
2015-11-28基础篇:数据挖掘的聚类算法和优势 比较分类算法的话,大概考虑这几个维度:时间空间复杂度,鲁棒性,参数敏感性,处理不规则形状,适合的类数量,类间差异(范围大小,样本个数,形状差异) 可以 ...
2015-11-28这七种回归分析技术,学了不后悔~ 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现 ...
2015-11-28从五大行业案例,看大数据的应用逻辑 本文从一则搞笑的大数据应用案例入手:某超市通过分析一位女顾客的购物数据(包括购物清单,浏览物品,咨询信息,视频监控信息<超市内徘徊区域>等),根据分析结果 ...
2015-11-28大数据如何改变旅游行业 据统计,国内旅游行业市场每年产值近4万亿,而在线旅游的总和才不到3千亿,在线旅游被称为竞争惨烈,为何才占7%左右?(参考竞争惨烈的服装行业,1万亿的市场,服装电商销售4千 ...
2015-11-28大数据分析在疾病与健康研究方面的应用 大数据分析技术将在以上方面发挥着特殊的作用。 一、疾病与健康研究 在疾病与健康研究方面,我们可将其分为三个子方面:健康研究、亚健康研究和疾病 ...
2015-11-28传统企业如何挖掘自身大数据的价值 当前,传统(非互联网类)企业已认识到大数据的价值,但如何结合企业现状有效应用大数据,仍普遍存在着迷茫。针对这种现状,下文基于企业大数据应用的相关服务经验,提 ...
2015-11-28如何用数据来做渠道效果的分析 日前和几个 BD 朋友聊天,听到说“现在很多渠道投放的效果犹如雾里看花,点击很多,激活很少,留存更是骨感……”想到自己对当下的统计后台还算了解,所以想从数据角 ...
2015-11-28大数据时代,精准化营销其实是在消费用户隐私 每个人都应该过了这样一种经历,当你曾经在自己的电脑上搜索过某件事或某件物后,很长一段时间里,你登陆所有的网站所看到的广告,都与你曾经搜索的事或物 ...
2015-11-28深度解析大数据在公安领域的应用 近一两年,大数据开始在公安等行业领域得到普及应用,除了行业自身的特殊要求外,大数据也带动了相关行业的需求发展。未来,基于大数据的行业应用会变得更加深入,更多 ...
2015-11-28大数据应用现状:从发现价值到创造价值 从发现价值到创造价值, 大数据将成为“互联网+” 产业升级的驱动力。 过去,数据的价值主要应用在决策领域,典型应用是商业智能(BI, Business Intelligence)在企 ...
2015-11-28营销人必看的四个数据营销方法论,你知道几个 谷歌每天要处理大约24PB的数据,Facebook每天要处理23TB的数据,Twitter每天处理7TB ,百度每天大概新增10TB的数据。 腾讯每日新增加200-300TB的数据,淘 ...
2015-11-28数据科学领域的职位划分以及职责技能 随着数据科学领域的招聘信息越来越多,范围也越来越广。Datacamp根据最新的数据科学相关招聘信息,全面的了解各个行业之间数据科学领域每个职位角色之间的差异,以 ...
2015-11-2813招神技 让你在数据科学和数据分析工作中脱颖而出 简介:我有幸在很早参与了一个大数据科学项目,我非常喜欢其中的工作,甚至我意识到我的努力可以增加一些公司的价值。 然而,可悲的是,只有不 ...
2015-11-28在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29